Please use this identifier to cite or link to this item: https://apo.ansto.gov.au/dspace/handle/10238/10953
Title: CAVD, towards better characterization of void space for ionic transport analysis
Authors: He, B
Ye, A
Chi, S
Mi, P
Ran, Y
Zhang, L
Zou, X
Pu, B
Zhao, Q
Zou, Z
Wang, D
Zhang, WQ
Zhao, J
Avdeev, M
Shi, S
Keywords: Radioisotope batteries
Electrolytes
Electrodes
Crystal structure
Electrochemistry
Ionic conductivity
Issue Date: 22-May-2020
Publisher: Springer Nature
Citation: He, B., Ye, A., Chi, S., Mi, P., Ran, Y., Zhang, L., Zou, X., Pu, B., Zhao, Q., Zou, Z., Wang, D., Zhang, W., Zhao, J., Avdeev, M., & Shi, S. (2020). CAVD, towards better characterization of void space for ionic transport analysis. Scientific Data, 7, 153. doi:10.1038/s41597-020-0491-x
Abstract: Geometric crystal structure analysis using three-dimensional Voronoi tessellation provides intuitive insights into the ionic transport behavior of metal-ion electrode materials or solid electrolytes by mapping the void space in a framework onto a network. The existing tools typically consider only the local voids by mapping them with Voronoi polyhedra vertices and then define the mobile ions pathways using the Voronoi edges connecting these vertices. We show that in some structures mobile ions are located on Voronoi polyhedra faces and thus cannot be located by a standard approach. To address this deficiency, we extend the method to include Voronoi faces in the constructed network. This method has been implemented in the CAVD python package. Its effectiveness is demonstrated by 99% recovery rate for the lattice sites of mobile ions in 6,955 Li-, Na-, Mg- and Al-containing ionic compounds extracted from the Inorganic Crystal Structure Database. In addition, various quantitative descriptors of the network can be used to identify and rank the materials and further used in materials databases for machine learning. © 2020, The Author(s)
URI: https://doi.org/10.1038/s41597-020-0491-x
https://apo.ansto.gov.au/dspace/handle/10238/10953
ISSN: 2052-4463
Appears in Collections:Journal Articles

Files in This Item:
File Description SizeFormat 
s41597-020-0491-x.pdf2.39 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.