Journal Articles

Browse

Recent Submissions

Now showing 1 - 5 of 3788
  • Item
    Phononic structure engineering: the realization of einstein rattling in calcium cobaltate for the suppression of thermal conductivity
    (Springer Nature, 2016-07-26) Tian, R; Kearley, GJ; Yu, DH; Ling, CD; Pham, AN; Embs, JP; Shoko, E; Li, S
    Phonons in condensed matter materials transmit energy through atomic lattices as coherent vibrational waves. Like electronic and photonic properties, an improved understanding of phononic properties is essential for the development of functional materials, including thermoelectric materials. Recently, an Einstein rattling mode was found in thermoelectric material Na0.8CoO2, due to the large displacement of Na between the [CoO2] layers. In this work, we have realized a different type of rattler in another thermoelectric material Ca3Co4O9 by chemical doping, which possesses the same [CoO2] layer as Na0.8CoO2. It remarkably suppressed the thermal conductivity while enhancing its electrical conductivity. This new type of rattler was investigated by inelastic neutron scattering experiments in conjunction with ab-initio molecular dynamics simulations. We found that the large mass of dopant rather than the large displacement is responsible for such rattling in present study, which is fundamentally different from skutterudites, clathrates as well as Na analogue. We have also tentatively studied the phonon band structure of this material by DFT lattice dynamics simulation, showing the relative contribution to phonons in the distinct layers of Ca3Co4O9. © The Author(s) 2016 - CC-BY - This work is licensed under a Creative Commons Attribution 4.0 International License.
  • Item
    The role of local-geometrical-orders on the growth of dynamic-length-scales in glass-forming liquids
    (Springer Nature, 2018-12-01) Wong, K; Krishnan, RP; Chen, C; Du, Q; Yu, DH; Lu, Z; Samwer, K; Chathoth, SM
    The precise nature of complex structural relaxation as well as an explanation for the precipitous growth of relaxation time in cooling glass-forming liquids are essential to the understanding of vitrification of liquids. The dramatic increase of relaxation time is believed to be caused by the growth of one or more correlation lengths, which has received much attention recently. Here, we report a direct link between the growth of a specific local-geometrical-order and an increase of dynamic-length-scale as the atomic dynamics in metallic glass-forming liquids slow down. Although several types of local geometrical-orders are present in these metallic liquids, the growth of icosahedral ordering is found to be directly related to the increase of the dynamic-length-scale. This finding suggests an intriguing scenario that the transient icosahedral connectivity could be the origin of the dynamic-length-scale in metallic glass-forming liquids. © The Author(s) 2018. Open Access - This article is licensed under a Creative Commons Attribution 4.0 International License.
  • Item
    Direct measurement of the intrinsic sharpness of magnetic interfaces formed by chemical disorder using a He+ beam
    (American Chemical Society, 2018-04-27) Causer, GL; Cortie, DL; Zhu, H; Ionescu, M; Mankey, GJ; Wang, XL; Klose, F
    Using ion beams to locally modify material properties and subsequently drive magnetic phase transitions is rapidly gaining momentum as the technique of choice for the fabrication of magnetic nanoelements. This is because the method provides the capability to engineer in three dimensions on the nanometer length scale. This will be an important consideration for several emerging magnetic technologies (e.g., spintronic devices and racetrack and random-access memories) where device functionality will hinge on the spatial definition of the incorporated magnetic nanoelements. In this work, the fundamental sharpness of a magnetic interface formed by nanomachining FePt3 films using He+ irradiation is investigated. Through careful selection of the irradiating ion energy and fluence, room-temperature ferromagnetism is locally induced into a fractional volume of a paramagnetic (PM) FePt3 film by modifying the chemical order parameter. A combination of transmission electron microscopy, magnetometry, and polarized neutron reflectometry measurements demonstrates that the interface over which the PM-to-ferromagnetic modulation occurs in this model system is confined to a few atomic monolayers only, while the structural boundary transition is less well-defined. Using complementary density functional theory, the mechanism for the ion-beam-induced magnetic transition is elucidated and shown to be caused by an intermixing of Fe and Pt atoms in antisite defects above a threshold density. © 2018 American Chemical Society.
  • Item
    Comparative study of alternative Geant4 hadronic ion inelastic physics models for prediction of positron-emitting radionuclide production in carbon and oxygen ion therapy
    (IOP Publishing, 2019-08-01) Chacon, A; Guatelli, S; Rutherford, H; Bolst, D; Mohammadi, A; Ahmed, A; Nitta, M; Nishikido, F; Iwao, Y; Tashima, H; Yoshida, E; Akamatsu, G; Takyu, S; Kitagawa, A; Hofmann, T; Pinto, M; Franklin, DR; Parodi, K; Yamaya, T; Rosenfeld, AB; Safavi-Naeini, M
    The distribution of fragmentation products predicted by Monte Carlo simulations of heavy ion therapy depend on the hadronic physics model chosen in the simulation. This work aims to evaluate three alternative hadronic inelastic fragmentation physics options available in the Geant4 Monte Carlo radiation physics simulation framework to determine which model most accurately predicts the production of positron-emitting fragmentation products observable using in-beam PET imaging. Fragment distributions obtained with the BIC, QMD, and INCL + + physics models in Geant4 version 10.2.p03 are compared to experimental data obtained at the HIMAC heavy-ion treatment facility at NIRS in Chiba, Japan. For both simulations and experiments, monoenergetic beams are applied to three different block phantoms composed of gelatin, poly(methyl methacrylate) and polyethylene. The yields of the positron-emitting nuclei 11C, 10C and 15O obtained from simulations conducted with each model are compared to the experimental yields estimated by fitting a multi-exponential radioactive decay model to dynamic PET images using the normalised mean square error metric in the entrance, build up/Bragg peak and tail regions. Significant differences in positron-emitting fragment yield are observed among the three physics models with the best overall fit to experimental 12C and 16O beam measurements obtained with the BIC physics model. © 2019 Commonwealth of Australia, Australian Nuclear Science and Technology Organisation, ANSTO.
  • Item
    Over‐stoichiometric metastabilization of cation‐disordered rock salts
    (Wiley, 2023-12-21) Wang, Y; Outka, A; Takele, WM; Avdeev, M; Sainio, S; Liu, R; Kee, V; Choe, W; Raji‐Adefila, B; Nordlund, D; Zhou, S; Kan, WH; Habteyes, TG; Chen, DC
    Cation‐disordered rock salts (DRXs) are well known for their potential to realize the goal of achieving scalable Ni‐ and Co‐free high‐energy‐density Li‐ion batteries. Unlike in most cathode materials, the disordered cation distribution may lead to more factors that control the electrochemistry of DRXs. An important variable that is not emphasized by research community is regarding whether a DRX exists in a more thermodynamically stable form or a more metastable form. Moreover, within the scope of metastable DRXs, over‐stoichiometric DRXs, which allow relaxation of the site balance constraint of a rock salt structure, are particularly underexplored. In this work, these findings are reported in locating a generally applicable approach to “metastabilize” thermodynamically stable Mn‐based DRXs to metastable ones by introducing Li over‐stoichiometry. The over‐stoichiometric metastabilization greatly stimulates more redox activities, enables better reversibility of Li deintercalation/intercalation, and changes the energy storage mechanism. The metastabilized DRXs can be transformed back to the thermodynamically stable form, which also reverts the electrochemical properties, further contrasting the two categories of DRXs. This work enriches the structural and compositional space of DRX families and adds new pathways for rationally tuning the properties of DRX cathodes. © 1999-2024 John Wiley & Sons, Inc or related companies.