ANSTO Publications Online

Welcome to the ANSTO Institutional Repository known as APO.

The APO database has been migrated to version 7.5. The functionality has changed, but the content remains the same.

ANSTO Publications Online is a digital repository for publications authored by ANSTO staff since 2007. The Repository also contains ANSTO Publications, such as Reports and Promotional Material. ANSTO publications prior to 2007 continue to be added progressively as they are in identified in the library. ANSTO authors can be identified under a single point of entry within the database. The citation is as it appears on the item, even with incorrect spelling, which is marked by (sic) or with additional notes in the description field.

If items are only held in hardcopy in the ANSTO Library collection notes are being added to the item to identify the Dewey Call number: as DDC followed by the number.

APO will be integrated with the Research Information System which is currently being implemented at ANSTO. The flow on effect will be permission to publish, which should allow pre-prints and post prints to be added where content is locked behind a paywall. To determine which version can be added to APO authors should check Sherpa Romeo. ANSTO research is increasingly being published in open access due mainly to the Council of Australian University Librarians read and publish agreements, and some direct publisher agreements with our organisation. In addition, open access items are also facilitated through collaboration and open access agreements with overseas authors such as Plan S.

ANSTO authors are encouraged to use a CC-BY licence when publishing open access. Statistics have been returned to the database and are now visible to users to show item usage and where this usage is coming from.


Communities in ANSTO Publications Online

Select a community to browse its collections.

Now showing 1 - 5 of 5

Recent Submissions

Properties of ALD Al2O3 protective coatings
(American Vacuum Society, 2010-10-21) Evans, PJ; Murai, Y; Lindsay, MJ; Davis, J; Triani, G
In recent years, atomic layer deposition (ALD) has emerged as a technology platform for nanofabrication [1]. This interest has evolved from its intrinsic advantages; inherent thickness control, the ability to prepare highly conformal pin-hole free films, low temperature film growth and its large area uniformity. These redeeming characteristics have broadened the application of ALD films in such diverse areas as encapsulation of nanoparticles [2], templating of complex structures [3] and the modification of membranes [4]. The deposition of atomic layer protective coatings on flexible polymers and metals is another target application to improve the lifetime performance of functional materials that may be susceptible to degradation [5]. In particular, the ingress of moisture and atmospheric gases as well as the effects of abrasion and thermal cycling can significantly diminish a material’s suitability in cases where its bulk properties meet all other requirements. Inorganic barrier coatings on flexible substrates are subject to additional constraints where the mechanical strength and adhesion of the protective coating are particularly important. In this study, ALD alumina coatings were deposited on flexible substrates including polycarbonate, polyethylene naphthalate (PEN), copper and titanium, to investigate their toughness and adhesion under tensile load. In addition, the effect of deposition conditions on the performance of these protective coatings will be presented. References H. Kim, H.B.R. Lee, and W.J. Maeng, Thin Solid Films, 517 (2009) 2563-2580. J.R. Scheffe, A. Frances, D.M. King, X. Liang, B.A. Branch, A.S. Cavanagh, S.M. George, and A.W. Weimer, Thin Solid Films, 517 (2009) 1874-1879. G. Triani, P.J. Evans, D.J. Attard, K.E. Prince, J Bartlett, S. Tan, and R.P. Burford, J. Mater. Chem., 16 (2006) 1355-1359. L.Velleman, G. Triani, P.J. Evans, J. G. Shapter, and D. Losic, Micropor. Mesopor. Mater. 126 (2009) 87-94. T. Hirkikorpi, M. Vaha-Nissi, T. Mustonen, E.Iiskola and M. Karppinen, Thin Solid Films, 518 (2010) 2654-2658
Desirable TiO2 compact films for nanostructured hybrid solar cells
(Taylor & Francis, 2019-08-08) Yun, JH; Lyu, MQ; Ahmed, R; Triani, G
Two different TiO2 compact films, fabricated by sol-gel spin-coating (SC) and spray-pyrolysis (SP) processes, were employed as an electron transport layer (ETL) to the nanostructured hybrid perovskite solar cells (PSCs), and they were comprehensively investigated through the various characterisation approaches using electrochemical and physicochemical approaches. With cyclic voltammetry and XPS results, the absence of pinholes on the SP-TiO2 compact films was indicated, and AFM and SEM results confirmed the SP-TiO2 compact films had lower surface roughness and more compact particle connectivity, offering a decent interface between the perovskite active layer and the adjacent TiO2 films. The performance of the SP-PSCs using the SP-TiO2 compact films was 7.06%, which was 3 times higher than that of the SC-PSCs. Voc decay measurement also confirmed that such pinhole-free and improved film interfaces of SP-TiO2 compact films contributed to elongating electron lifetime in PSCs by the enhanced hole blocking effect of the SP-TiO2 compact films. © 2020 Informa UK Limited
Mechanical stability of a Ti02 coating deposited on a polycarbonate substrate
(Routledge, 2005) Ignat, M; Getin, S; Latella, BA; Barbé, CJ; Triani, G
The demands imposed on mechanical durability of film-substrate systems in many leading technologies (particularly microelectronics, photonics and biomaterials) are becoming more stringent and, thus, associated problems have to be understood and solved. Film-substrate systems are subjected to internal stresses, caused by thermoelastic mismatch, or to external mechanical stresses applied monotonically or cyclically. When reaching critical levels, these stresses may activate damage mechanisms such as cracking and de-adhesion of the film. Identifying these failures and understanding the critical conditions which cause them is essential, prior to any technological application of the system. © 2005 CRC Press
Low temperature bonding of ceramics by sol-gel processing
(Springer Nature, 2001-12) Barbé , CJ; Cassidy, DJ; Triani, G; Latella, BA; Mitchell, DRG; Finnie, KS; Bartlett, JR; Woolfrey, JL; Collins, GA
Sol-gel bonds were produced between smooth, clean silicon or polycrystalline alumina substrates by spin-coating solutions containing partially hydrolysed silicon alkoxides onto both substrates. The two coated substrates were assembled and the resulting sandwich was fired at temperatures ranging from 300 to 600°C. The influence of the sol-gel chemistry on the film microstructure and interfacial fracture energy was investigated using a wide range of techniques, including ellipsometry, FTIR, TG-DTA, rheology, TEM and micro-indentation. For silicon wafers, an optimum water-alkoxide molar ratio of 10 and hydrolysis water pH of 2 were found. Such conditions led to relatively dense films (>90%), resulting in bonds with significantly higher fracture energy (3.5 J/m2) than those obtained using classical water bonding (typically 1.5 J/m2). Aging of the coating solution was found to decrease the bond strength. Poly-crystalline alumina substrates were similarly bonded at 600°C; the optimised silica sol-gel chemistry yielded interfaces with fracture energy of 4 J/m2. © 2000 Kluwer Academic Publishers.
Characterisation of epitaxial TiO2 thin films grown on MgO(0 0 1) using atomic layer deposition
(Elsevier, 2005-11-15) Mitchell, DRG; Attard, DJ; Triani, G
Thin films of TiO2 have been deposited onto MgO(0 0 1) substrates using atomic layer deposition at 300 °C. Plan and cross-sectional transmission electron microscopy (TEM), X-ray diffraction and atomic force microscopy have been used to understand the nature of the films. X-ray and electron diffraction showed that a polycrystalline, epitaxial anatase film was produced. The c-axis of the anatase was parallel to the MgO(0 0 1) surface with two orientational variants at right angles to each other in the plane of the film, each aligned with an MgO cube axis. Plan-view and cross-sectional TEM showed that the grain structure of the film reflected this orientation relationship, with the grain morphology comprising two sets of roughly tetragonal grains. Also present was a small fraction of equiaxed, anatase grains which were randomly oriented. Roughness measurement using atomic force microscopy showed that the epitaxial anatase films were quite smooth, in comparison to equivalent non-aligned films grown on silicon. Crown copyright © 2005. Published by Elsevier B.V.