ANSTO Publications Online

Welcome to the ANSTO Institutional Repository known as APO.

The APO database has been migrated to version 7.5. The functionality has changed, but the content remains the same.

ANSTO Publications Online is a digital repository for publications authored by ANSTO staff since 2007. The Repository also contains ANSTO Publications, such as Reports and Promotional Material. ANSTO publications prior to 2007 continue to be added progressively as they are in identified in the library. ANSTO authors can be identified under a single point of entry within the database. The citation is as it appears on the item, even with incorrect spelling, which is marked by (sic) or with additional notes in the description field.

If items are only held in hardcopy in the ANSTO Library collection notes are being added to the item to identify the Dewey Call number: as DDC followed by the number.

APO will be integrated with the Research Information System which is currently being implemented at ANSTO. The flow on effect will be permission to publish, which should allow pre-prints and post prints to be added where content is locked behind a paywall. To determine which version can be added to APO authors should check Sherpa Romeo. ANSTO research is increasingly being published in open access due mainly to the Council of Australian University Librarians read and publish agreements, and some direct publisher agreements with our organisation. In addition, open access items are also facilitated through collaboration and open access agreements with overseas authors such as Plan S.

ANSTO authors are encouraged to use a CC-BY licence when publishing open access. Statistics have been returned to the database and are now visible to users to show item usage and where this usage is coming from.

 

Communities in ANSTO Publications Online

Select a community to browse its collections.

Now showing 1 - 5 of 5

Recent Submissions

Item
The role of metallurgical solid state phase transformations on the formation of residual stress in laser cladding and heating
(Trans Tech Publications, 2014-02) Cottam, R; Luzin, V; Thorogood, KJ; Wong, YC; Brandt, M
There are two major types of solid state phase transformations in metallic materials; the formation of second phase particles during heat treatments, and the transformation of the matrix from one crystalline packing arrangement to another during either heating or cooling. These transformations change the spacing between adjacent atoms and can thus influence the residual stress levels formed. The heating and cooling cycles of materials processing operations using lasers such as cladding and melting/heating, can induce phase transformations depending on the character of the material being processed. This paper compares the effects of the different phase transformations and also the influence of the type of laser processing on the final residual stress formed. The comparisons are made between laser clad AA7075, laser clad Ti-6Al-4V and laser melted nickel-aluminium bronze using neutron diffraction and the contour method of measuring residual stress. © 2014 Trans Tech Publications.
Item
Tandem probe analysis mode for synchrotron XFM: doubling throughput capacity
(American Chemical Society (ACS), 2022-03-22) Doolette, CL; Howard, DL; Afshar, N; Kewish, CM; Paterson, DJ; Huang, J; Wagner, S; Santner, J; Wenzel, WW; Raimondo, T; De Vries Van Leeuwen, AT; Hou, L; van der Bom, F; Weng, H; Kopittke, PM; Lombi, E
Synchrotron-based X-ray fluorescence microscopy (XFM) analysis is a powerful technique that can be used to visualize elemental distributions across a broad range of sample types. Compared to conventional mapping techniques such as laser ablation inductively coupled plasma mass spectrometry or benchtop XFM, synchrotron-based XFM provides faster and more sensitive analyses. However, access to synchrotron XFM beamlines is highly competitive, and as a result, these beamlines are often oversubscribed. Therefore, XFM experiments that require many large samples to be scanned can penalize beamline throughput. Our study was largely driven by the need to scan large gels (170 cm2) using XFM without decreasing beamline throughput. We describe a novel approach for acquiring two sets of XFM data using two fluorescence detectors in tandem; essentially performing two separate experiments simultaneously. We measured the effects of tandem scanning on beam quality by analyzing a range of contrasting samples downstream while simultaneously scanning different gel materials upstream. The upstream gels were thin (<200 μm) diffusive gradients in thin-film (DGT) binding gels. DGTs are passive samplers that are deployed in water, soil, and sediment to measure the concentration and distribution of potentially bioavailable nutrients and contaminants. When deployed on soil, DGTs are typically small (2.5 cm2), so we developed large DGTs (170 cm2), which can be used to provide extensive maps to visualize the diffusion of fertilizers in soil. Of the DGT gel materials tested (bis-acrylamide, polyacrylamide, and polyurethane), polyurethane gels were most suitable for XFM analysis, having favorable handling, drying, and analytical properties. This gel type enabled quantitative (>99%) transmittance with minimal (<3%) flux variation during raster scanning, whereas the other gels had a substantial effect on the beam focus. For the first time, we have (1) used XFM for mapping analytes in large DGTs and (2) developed a tandem probe analysis mode for synchrotron-based XFM, effectively doubling throughput. The novel tandem probe analysis mode described here is of broad applicability across many XFM beamlines as it could be used for future experiments where any uniform, highly transmissive sample could be analyzed upstream in the "background"of downstream samples. © 2022 The Authors. Published by American Chemical Society.
Item
Variability and morphological peatures of Woolly Rhinoceros skulls (Coelodonta antiquitatis (Blumenbach 1799)) from Northeastern Asia in the late Pleistocene
(Pleiades Publishing, 2021-12) Puzachenko, AY; Kirillova, IV; Shidlovsky, FK; Levchenko, VA
Abstract: We studied 63 woolly rhinoceros skulls from the northeast of Russia (northwestern Chukotka, northeastern Yakutia) housed in the collection of the “Ice Age” Museum-Theatre, Moscow. Both sexual dimorphism and size/shape variability of woolly rhinoceros skulls are explored using univariate and multivariate statistics for the first time. Peculiarities of the variability, which are probably related to gender, are expressed in (1) different sets of skull variables the variability of which does not depend on “general size” variations and (2) differences in skull allometry in males and females. The structure of morphological variability is discussed. Statistically significant morphological heterogeneity is detected within the male and female samples. This is shown to be the consequence of the presence of two size groups that are not related to individual age. Based on published radiocarbon dates, it is hypothesized that there was a decrease in skull size in the woolly rhinoceros is at the end of megainterstadial (MIS) 3 to the early Last Glacial Maximum MIS 2 in northeastern Asia. To test this hypothesis, new radiocarbon dates of the studied specimens are needed. © 2024 Springer Nature.
Item
Polarized neutron reflectometry of epitaxial Fe[0.25 + x] Pt[0.75 – x] layers.
(Institute of Electrical and Electronics Engineers (IEEE), 2018-04-27) Mankey, GJ; Causer, GL; Cortie, DL; Wang, X; Zhu, H; Lonescu, M; Klose, F
Epitaxial Fe[0.25 + x]Pt[0.75 - x] layers can be either antiferromagnetic (AF) or ferromagnetic (FM) depending on the degree of chemical ordering controlled by the deposition temperature. Our neutron diffraction studies were the first to study AF phase transitions in these thin films [1] and we have also shown using PNR that a mixed AF-FM film is exchange biased with itself [2]. In AF-FM exchange-biased superlattices with a modulated chemical order parameter, PNR shows the magnetization can be modulated through the film thickness with no composition modulations [3]. Our recent results reveal that He+ ion bombardment and annealing can be applied toward controlling magnetic phases in epitaxial Fe [0.25] Pt [0.75] layers [4]. © Copyright 2024 IEEE - All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies.
Item
Size‐dependent penetration of nanoparticles in tumor spheroids: a multidimensional and quantitative study of transcellular and paracellular pathways
(Wiley, 2023-10-11) Chen, W; Wang, WQ; Xie, Z; Centurion, F; Sun, B; Paterson, DJ; Tsao, SCH; Chu, D; Shen, Y; Mao, G; Gu, Z
Tumor penetration of nanoparticles is crucial in nanomedicine, but the mechanisms of tumor penetration are poorly understood. This work presents a multidimensional, quantitative approach to investigate the tissue penetration behavior of nanoparticles, with focuses on the particle size effect on penetration pathways, in an MDA‐MB‐231 tumor spheroid model using a combination of spectrometry, microscopy, and synchrotron beamline techniques. Quasi‐spherical gold nanoparticles of different sizes are synthesized and incubated with 2D and 3D MDA‐MB‐231 cells and spheroids with or without an energy‐dependent cell uptake inhibitor. The distribution and penetration pathways of nanoparticles in spheroids are visualized and quantified by inductively coupled plasma mass spectrometry, two‐photon microscopy, and synchrotron X‐ray fluorescence microscopy. The results reveal that 15 nm nanoparticles penetrate spheroids mainly through an energy‐independent transcellular pathway, while 60 nm nanoparticles penetrate primarily through an energy‐dependent transcellular pathway. Meanwhile, 22 nm nanoparticles penetrate through both transcellular and paracellular pathways and they demonstrate the greatest penetration ability in comparison to other two sizes. The multidimensional analytical methodology developed through this work offers a generalizable approach to quantitatively study the tissue penetration of nanoparticles, and the results provide important insights into the designs of nanoparticles with high accumulation at a target site. ©2023 The Authors. Small published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.