ANSTO Publications Online

Welcome to the ANSTO Institutional Repository known as APO.

The APO database has been migrated to version 7.5. The functionality has changed, but the content remains the same.

ANSTO Publications Online is a digital repository for publications authored by ANSTO staff since 2007. The Repository also contains ANSTO Publications, such as Reports and Promotional Material. ANSTO publications prior to 2007 continue to be added progressively as they are in identified in the library. ANSTO authors can be identified under a single point of entry within the database. The citation is as it appears on the item, even with incorrect spelling, which is marked by (sic) or with additional notes in the description field.

If items are only held in hardcopy in the ANSTO Library collection notes are being added to the item to identify the Dewey Call number: as DDC followed by the number.

APO will be integrated with the Research Information System which is currently being implemented at ANSTO. The flow on effect will be permission to publish, which should allow pre-prints and post prints to be added where content is locked behind a paywall. To determine which version can be added to APO authors should check Sherpa Romeo. ANSTO research is increasingly being published in open access due mainly to the Council of Australian University Librarians read and publish agreements, and some direct publisher agreements with our organisation. In addition, open access items are also facilitated through collaboration and open access agreements with overseas authors such as Plan S.

ANSTO authors are encouraged to use a CC-BY licence when publishing open access. Statistics have been returned to the database and are now visible to users to show item usage and where this usage is coming from.


Communities in ANSTO Publications Online

Select a community to browse its collections.

Now showing 1 - 5 of 5

Recent Submissions

Constraining the evolution of the fossil component of the global methane budget since the pre-industrial using 14C measurements in firn air and ice cores
(American Geophysical Union, 2018-12-13) Hmiel, B; Dyonisius, MN; Petrenko, VV; Buizert, C; Smith, AM; Place, PF; Etheridge, DM; Harth, CM; Beaudette, R; Hua, Q; Yang, B; Vimont, I; Brook, EJ; Weiss, RF; Severinghaus, JP
Radiocarbon of atmospheric methane (14CH4) is much less studied than radiocarbon of atmospheric carbon dioxide (14CO2) yet has potential to serve as an unambiguous indicator of the balance between fossil and contemporaneous sources of this important greenhouse gas. Few measurements of atmospheric 14CH4 exist before the late 20th century. We present measurements of past atmospheric 14CH4 in firn air and ice at Summit, Greenland. These data provide a record of atmospheric 14CH4 from 2013 back to ~1750 CE. Results have been corrected for a small amount of cosmogenic in-situ production of 14CH4 within the ice crystal lattice. A firn gas transport model was used to simulate the transport of gases through the porous firn column and into fully closed ice, and an inverse model reconstructed the firn air and ice 14CH4 data into an atmospheric history. Our results from the mid-late 20th century agree with the only previously published measurements of 14CH4 from firn air (at Law Dome, Antarctica). Pre-industrial 14CH4 samples agree with the INTCAL13 14CO2 history within uncertainties, indicating that natural geologic methane emissions are very low and have been commonly overestimated in the global methane budget. From ~1880 to ~1950 CE, the atmospheric 14CH4 activity decreased via the Suess effect, indicating a 14 ± 2% fossil CH4 source in the mid 1900’s. After mid-century, despite increasing anthropogenic fossil CH4 emissions, the 14CH4 activity began increasing due to atmospheric nuclear bomb testing and direct 14CH4 emissions from nuclear power plants.
The high performance macromolecular crystallography (MX3) beamline
(Australian Nuclear Science and Technology Organisation, 2021-11-26) Eriksson, D; Caradoc-Davies, T; Magoulas, C; Wong, D; Harnandez Vivanco, F; Cherukuvada, H; Cain, N; Rostan, R; Nuthalapati, S
The MX3 beamline will extend the capabilities of the existing suite of MX beamlines at the Australian Synchrotron. It will allow collection on crystals that are too small or weakly diffracting for the current beamlines. A high level of automation will transform membrane protein micro crystal collection and high throughput projects such as drug and fragment screening. Sample positioning will be provided via an MD3-UP goniometer and an ISARA robot will allow 6 second sample exchange. Serial crystallography capability will be provided using in-tray screening and collection and fixed target silicon chip scanning stages. A dedicated cluster will provide real-time data processing and automated data collection will be standard. This will include automated location of crystals from a rastered volume with subsequent data collection on each crystal with resulting automated data merging from multiple crystals. Some outstanding questions for the user community relate to time-resolved crystallography, and injector experiment capabilities; options will be presented and discussed. © The Authors
Neutron and synchrotron characterisation techniques for hydrogen fuel cell materials
(Australian Nuclear Science and Technology Organisation, 2021-11-24) Lamb, K; Kirby, N; Bartlett, JR; Peterson, VK; Appadoo, D; Jiang, SP; De Marco, R
Hydrogen fuel cells and other renewable energy technologies have specific materials and functional needs which can be more fully understood using neutron and synchrotron characterisation techniques. In this presentation, a materials which has applications in proton exchange membranes is studied with a variety to techniques to develop a comprehensive understanding of the functional-structural relationship. The materials used here is phosphotungstic acid (HPWA) stabilised in an ‘inert’ mesoporous silica host material. This aim of this research is to develop an understanding of the interaction between the HPWA and the silica and whether different structures or surface chemistries have advantageous or detrimental effects. Two silica symmetries used were Ia3 ̅d (face centred cubic bi-continuous) and P6mm (2D hexagonal with cylindrical pores) which were vacuum impregnated with solutions of HPWA in a range of concentrations. The resulting powder samples were then analysed using small angle x-ray scattering (SAXS), inductively coupled plasma emissions spectroscopy (ICP-OES), nitrogen gas adsorption/desorption, near edge X-ray absorption fine structure (NEXAFS/X-ray absorption near edge structure/XANES) of the O and Si k-edges, Fourier transform infra-red spectroscopy (FTIR), Raman spectroscopy, and then formed into a disk using polyethylene as the binder for electrical impedance spectroscopy (EIS). The insights gained from this systematic study indicate that the surface chemistry of the silica host has a significant effect on the performance, uptake and interactions with the HPWA anions, where lower concentrations of HPWA result in stronger host:HPWA interactions but lower conductivity. © The Authors
The recent progress of polarized neutron scattering techniques at SIKA
(Australian Nuclear Science and Technology Organisation, 2021-11-26) Yano, SC; Deng, GH; Rule, KC; de Souza, NR; Manning, AG; Peng, H; Wu, CM
SIKA, the cold-neutron triple-axis spectrometer is on the CG4 beam port at the OPAL reactor, ACNS, ANSTO. We have reported the capabilities and status of SIKA in the last several user's meetings. In this meeting, we discuss the recent development of polarized neutron scattering experiments on SIKA. A 3He polarization analysis system is available for SIKA. We have performed several user experiments and commissioning experiments in the last two years. We would like to present some results by introducing the techniques we are trying to implement. In addition, we discuss our plan for the polarized neutron scattering experiment on the SIKA. © The Authors
Small angle neutron scattering capability at ANSTO
(Australian Nuclear Science and Technology Organisation, 2021-11-24) de Campo, L; Elliott, EP; Knott, RB; Mata, JP; Sokolova, AV; Whitten, AE; Wood, K; Wu, CM
The ANSTO Lucas Heights campus is home to three world-class small angle neutron scattering (SANS) instruments: Bilby, a time-of-flight SANS instrument [1], Kookaburra, an Ultra-Small Angle Neutron scattering instrument [2] and Quokka, a monochromatic SANS instrument [3]. Together they cover the structure of materials from 1 nm to > 20 microns. As well as recent scientific highlights, we here outline the updates from the group since the last ANSTO user meeting, notably: - The replacement of our lab-based small angle X-ray instrument with a state-of-the-art instrument along with a range of dedicated sample environments, currently being procured and due for installation early 2022. - The new rheometer for in-situ measurements on the three neutron instruments. - Our recently developed GiSANS setup, funded by the National Synchrotron Radiation Research Center. © The Authors