ANSTO Publications Online

Welcome to the ANSTO Institutional Repository known as APO.

The APO database has been migrated to version 7.5. The functionality has changed, but the content remains the same.

ANSTO Publications Online is a digital repository for publications authored by ANSTO staff since 2007. The Repository also contains ANSTO Publications, such as Reports and Promotional Material. ANSTO publications prior to 2007 continue to be added progressively as they are in identified in the library. ANSTO authors can be identified under a single point of entry within the database. The citation is as it appears on the item, even with incorrect spelling, which is marked by (sic) or with additional notes in the description field.

If items are only held in hardcopy in the ANSTO Library collection notes are being added to the item to identify the Dewey Call number: as DDC followed by the number.

APO will be integrated with the Research Information System which is currently being implemented at ANSTO. The flow on effect will be permission to publish, which should allow pre-prints and post prints to be added where content is locked behind a paywall. To determine which version can be added to APO authors should check Sherpa Romeo. ANSTO research is increasingly being published in open access due mainly to the Council of Australian University Librarians read and publish agreements, and some direct publisher agreements with our organisation. In addition, open access items are also facilitated through collaboration and open access agreements with overseas authors such as Plan S.

ANSTO authors are encouraged to use a CC-BY licence when publishing open access. Statistics have been returned to the database and are now visible to users to show item usage and where this usage is coming from.

 

Communities in ANSTO Publications Online

Select a community to browse its collections.

Now showing 1 - 5 of 5

Recent Submissions

Item
Low-overpotential rechargeable Na–CO2 batteries enabled by an oxygen-vacancy-rich cobalt oxide catalyst
(American Chemical Society (ACS), 2024-03-26) Zheng, Z; Zheng, XB; Jiang, JC; Zhang, Q; Li, P; Li, C; Gu, QF; Wei, L; Konstantinov, K; Yang, WS; Chen, Y; Wang, JZ
Rechargeable sodium–carbon dioxide (Na–CO2) batteries have been proposed as a promising CO2 utilization technique, which could realize CO2 reduction and generate electricity at the same time. They suffer, however, from several daunting problems, including sluggish CO2 reduction and evolution kinetics, large polarization, and poor cycling stability. In this study, a rambutan-like Co3O4 hollow sphere catalyst with abundant oxygen vacancies was synthesized and employed as an air cathode for Na–CO2 batteries. Density functional theory calculations reveal that the abundant oxygen vacancies on Co3O4 possess superior CO2 binding capability, accelerating CO2 electroreduction, and thereby improving the discharge capacity. In addition, the oxygen vacancies also contribute to decrease the CO2 decomposition free energy barrier, which is beneficial for reducing the overpotential further and improving round-trip efficiency. Benefiting from the excellent catalytic ability of rambutan-like Co3O4 hollow spheres with abundant oxygen vacancies, the fabricated Na–CO2 batteries exhibit extraordinary electrochemical performance with a large discharge capacity of 8371.3 mA h g–1, a small overpotential of 1.53 V at a current density of 50 mA g–1, and good cycling stability over 85 cycles. These results provide new insights into the rational design of air cathode catalysts to accelerate practical applications of rechargeable Na–CO2 batteries and potentially Na–air batteries. © 2024 American Chemical Society
Item
Understanding the charge transfer effects of single atoms for boosting the performance of Na-S batteries
(Springer Nature, 2024-04-18) Lei, YJ; Lu, XX; Yoshikawa, H; Matsumura, D; Fan, YM; Zhao, LF; Li, JY; Wang, SJ; Gu, QF; Liu, HK; Dou, SX; Devaraj, S; Rojo, T; Lai, WH; Armand, M; Wang, YX; Wang, GX
The effective flow of electrons through bulk electrodes is crucial for achieving high-performance batteries, although the poor conductivity of homocyclic sulfur molecules results in high barriers against the passage of electrons through electrode structures. This phenomenon causes incomplete reactions and the formation of metastable products. To enhance the performance of the electrode, it is important to place substitutable electrification units to accelerate the cleavage of sulfur molecules and increase the selectivity of stable products during charging and discharging. Herein, we develop a single-atom-charging strategy to address the electron transport issues in bulk sulfur electrodes. The establishment of the synergistic interaction between the adsorption model and electronic transfer helps us achieve a high level of selectivity towards the desirable short-chain sodium polysulfides during the practical battery test. These finding indicates that the atomic manganese sites have an enhanced ability to capture and donate electrons. Additionally, the charge transfer process facilitates the rearrangement of sodium ions, thereby accelerating the kinetics of the sodium ions through the electrostatic force. These combined effects improve pathway selectivity and conversion to stable products during the redox process, leading to superior electrochemical performance for room temperature sodium-sulfur batteries. © The Author(s) 2024 This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
Item
A comparative study of magnetic behaviours in bulk and ribbon samples of PrMn2Ge2 compound
(Elsevier, 2024-05) Li, JY; Hao, HY; Hutchison, WD; Hu, CC; Su, F; Xue, YF; Gu, QF; Campbell, SJ; Wang, WQ; Cheng, ZX; Wang, JL
The magnetic properties of PrMn2Ge2 samples in both the as-cast bulk and melt-spun ribbon forms have been investigated in detail by a comprehensive set of x-ray and neutron powder diffraction, magnetic and heat capacity measurements and corresponding sets of data analyses. Thermal expansion measurements indicate the presence of magnetoelastic coupling effects around all transition temperatures in the bulk sample. The bulk modulus K0 = 42.0 GPa and its first derivative K0’ = 18.7 have been derived from the pressure-volume data. The Curie temperature from the intralayer antiferromagnetism (AFl) of PrMn2Ge2 to a canted spin structure (Fmc) is TCinter = 332 K for the bulk sample, decreasing to TCinter = 320 K for the ribbon sample. The critical components γ, β and δ of this second order magnetic transition as determined from Kouvel-Fisher analyses, indicate long range magnetic interactions around TCinter. Based on these critical exponents the magnetization, field and temperature data around TCinter collapse onto two curves obeying the single scaling equation. The Debye temperatures and the density of states at the Fermi level are and for the bulk sample and and for the ribbon sample with the nuclear specific heat coefficient for bulk PrMn2Ge2 derived from the splitting of the nuclear hyperfine levels as CN = 517 mJ mol−1 K−1. With a field change of ΔB = 5 T, the maximum values of the magnetic entropy changes -ΔSmax in the region around TCinter are -ΔSmax = 3.00 J/kg K and 2.35 J/kg K for the bulk and ribbon samples respectively, while the relative cooling power (RCP) for the ribbon-spun sample, RCP = 135.9 J/kg, is significantly higher than the value of RCP = 116.6 J/kg for the bulk sample. These findings indicate that PrMn2Ge2 could be a promising candidate for magnetic refrigeration applications in the room temperature region. © 2024 Elsevier Ltd.
Item
Two positive effects with one arrow: modulating crystal and interfacial decoration towards high-potential cathode material
(Elsevier, 2024-05) Gu, XX; Gao, XW; Yang, DR; Gu, QF; Song, Y; Chen, H; Ren, TZ; Luo, WB
As the primary suppliers of cyclable sodium ions, O3-type layer-structured manganese-based oxides are recognized as highly competitive cathode candidates for sodium-ion batteries. To advance the development of high-energy sodium-ion batteries, it is crucial to explore cathode materials operating at high voltages while maintaining a stable cycling behavior. The orbital and electronic structure of the octahedral center metal element plays a crucial role in maintaining the octahedra structural integrity and improving Na+ ion diffusion by introducing heterogeneous chemical bonding. Inspired by the abundant configuration of extra nuclear electrons and large ion radius, we employed trace amounts of tungsten in this study. The obtained cathode material can promote the reversibility of oxygen redox reactions in the high-voltage region and inhibit the loss of lattice oxygen. Additionally, the formation of a Na2WO4 coating on the material surface can improve the interfacial stability and interface ions diffusion. It demonstrates an initial Coulombic efficiency (ICE) of 94.6% along with 168.5 mA h g−1 discharge capacity within the voltage range of 1.9–4.35 V. These findings contribute to the advancement of high-energy sodium-ion batteries by providing insights into the benefits of tungsten doping and Na2WO4 coating on cathode materials. © 2024 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by ELSEVIER B.V. and Science Press
Item
Untitled
(American Chemical Society, 2024-05-08) Li, JY; Hu, Y; Li, HW; Liu, YF; Su, Y; Jia, XB; Zhao, LR; Fan, YM; Gu, QF; Zhang, H; Pang, WK; Zhu, YF; Wang, JZ; Dou, SX; Chou, SL; Xiao, Y
P3-layered transition oxide cathodes have garnered considerable attention owing to their high initial capacity, rapid Na+ kinetics, and less energy consumption during the synthesis process. Despite these merits, their practical application is hindered by the substantial capacity degradation resulting from unfavorable structural transformations, Mn dissolution and migration. In this study, we systematically investigated the failure mechanisms of P3 cathodes, encompassing Mn dissolution, migration, and the irreversible P3-O3' phase transition, culminating in severe structural collapse. To address these challenges, we proposed an interfacial spinel local interlocking strategy utilizing P3/spinel intergrowth oxide as a proof-of-concept material. As a result, P3/spinel intergrowth oxide cathodes demonstrated enhanced cycling performance. The effectiveness of suppressing Mn migration and maintaining local structure of interfacial spinel local interlocking strategy was validated through depth-etching X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, and in situ synchrotron-based X-ray diffraction. This interfacial spinel local interlocking engineering strategy presents a promising avenue for the development of advanced cathode materials for sodium-ion batteries. © 2025 American Chemical Society