ANSTO Publications Online

Welcome to the ANSTO Institutional Repository known as APO.

The APO database has been migrated to version 7.5. The functionality has changed, but the content remains the same.

ANSTO Publications Online is a digital repository for publications authored by ANSTO staff since 2007. The Repository also contains ANSTO Publications, such as Reports and Promotional Material. ANSTO publications prior to 2007 continue to be added progressively as they are in identified in the library. ANSTO authors can be identified under a single point of entry within the database. The citation is as it appears on the item, even with incorrect spelling, which is marked by (sic) or with additional notes in the description field.

If items are only held in hardcopy in the ANSTO Library collection notes are being added to the item to identify the Dewey Call number: as DDC followed by the number.

APO will be integrated with the Research Information System which is currently being implemented at ANSTO. The flow on effect will be permission to publish, which should allow pre-prints and post prints to be added where content is locked behind a paywall. To determine which version can be added to APO authors should check Sherpa Romeo. ANSTO research is increasingly being published in open access due mainly to the Council of Australian University Librarians read and publish agreements, and some direct publisher agreements with our organisation. In addition, open access items are also facilitated through collaboration and open access agreements with overseas authors such as Plan S.

ANSTO authors are encouraged to use a CC-BY licence when publishing open access. Statistics have been returned to the database and are now visible to users to show item usage and where this usage is coming from.

 

Communities in ANSTO Publications Online

Select a community to browse its collections.

Now showing 1 - 5 of 5

Recent Submissions

Item
Recent enhancements and performance gains from upgrades to ANSTO's thermal neutron instrument TAIPAN and the triple-axis and Be-filter spectrometers
(Australian Nuclear Science and Technology Organisation, 2017-11-28) Rule, KC; Ogrin, A; Berry, A; Stampfl, APJ; Bartlett, D; Franceschini, F; Darmann, FA; Olsen, SR; Danilkin, SA; Pangelis, S; Oste, T; Ersez, T
TAIPAN is the thermal-neutron spectrometer located at the reactor face of Australia's OPAL reactor (ANSTO). TAIPAN hosts two interchangeable secondary instruments; the triple-axis spectrometer (TAS) and the beryllium filter spectrometer. The TAS option has been operating since 2010 whilst the Be-filter only began operating in 2015. TAIPAN is renowned for its versatility and high neutron flux which has allowed the TAS to measure a broad range of samples including single crystals, powders, thin films, and co-aligned multi-crystal arrays. While the TAS option is used mostly to study structural and magnetic excitations in materials, the Be-filter option is used to measure vibrational density of states from powder samples. TAIPAN has recently undergone some upgrades to improve the accessible momentum and energy range of both the TAS and the Be-filter spectrometers. Four key features have been modified to improve performance: the accessible momentum transfer has been increased by re-designing the enclosure; a sapphire-filter translation-stage mechanism has been installed to allow epithermal neutrons to pass to the monochromators; a new Cu-200 double-focussing monochromator has been installed to allow monochromatic scattering of neutrons up to 180 meV; and finally a new tertiary shutter and snout have been designed to improve the signal-to-noise ratio and reduced background outside the instrument enclosure. Extensive testing and alignment of all new motion stages were undertaken with reproducibility within ±0.05degrees or ±0.25mm obtained for both the monochromator rotation angle & sapphire-filter alignment. © The Authors.
Item
Investigation of residual stresses distribution in titanium weldments
(Australian Nuclear Science and Technology Organisation, 2013-09) Song, SP; Paradowska, AM; Dong, PS
Titanium and its alloys have increasingly become a material of choice for applications in high-performance structures due to their superior corrosion resistance and high strength-to-weight ratio. However, in contrast to conventional steel alloys, there exist little design and manufacturing experience in the heavy fabrication industry with large welded structures made of titanium materials. In addressing the above concern, the University of New Orleans funded by Office of Naval Research (ONR) initiated program on investigation of manufacturability and performance of a titanium mid-ship section. The uniqueness of this program is its focus upon a representative full-size mid-ship section upon which relevant scientific and technological challenges are simulated and experimentally validated. This paper reports the measurements of residual stresses using neutron diffraction in titanium T-joints. The residual stresses were measured using Engin-X at ISIS (UK) and the Kowari Strain Scanner at ANSTO (Australia). This experimental research was used to validate our in house predictions and significantly improved the knowledge and understanding of the welding process of titanium alloys.
Item
Exploring the biological identity of nanoplastics
(Institut Laue Langevin, 2024-07-18) Kihara, S; Mata, JP; Domigan, L; Keoper, I; McGillivray, DJ
Despite recent attention to nanoplastics, there is still much to learn about their surface coatings that give them their “bioidentity”, which is critical to their behaviour in biological contexts. These coatings, corona, form on the particle as a complex mixtures of proteins and other surface-active chemicals – some strongly bound, and others weakly attached and exceptionally hard to study– which depend on both the particle and its environment. We show that the nature of the protein corona in simple systems depends on the surface charge and particle size of the nanoplastics, and that nanoparticles with corona can aggregate to form higher order structures, which may trigger biological stress responses. We also show that model nanoplastics strongly associate with human alveolar epithelial cells, in a manner dependent on their protein corona. However, there is much still to be learnt about the impact of complex environmental systems on these coatings, which is critical to the development of mitigation strategies for nanoplastic contamination.
Item
Impurity tolerance of unsaturated Ni-N‑C active sites for practical electrochemical CO2 reduction
(American Chemical Society (ACS), 2022-02-09) Leverett, J; Yuwono, JA; Kumar, P; Tran-Phu, T; Qu, JT; Cairney, JM; Wang, X; Simonov, AN; Hocking, RK; Johannessen, B; Dai, L; Daiyan, R; Amal, R
Demonstrating the potential of the electrochemical carbon dioxide reduction reaction (CO2RR) in industrially relevant conditions is a promising route for achieving net-zero emissions through decarbonization. This requires a catalyst system that displays not only high activity and stability but also the capacity to deliver a consistent performance in the presence of waste stream impurities. To explore these opportunities, we investigate the role that the Ni coordination structure plays on the impurity tolerance of highly active single-atom catalysts (SACs) during CO2RR. The as-synthesized materials are highly active for CO2RR to CO, achieving a current density of 470 mA cm-2 and a CO selectivity of 99% in a CO2 electrolyzer. We demonstrate, through high-temperature pyrolysis, that a higher concentration of “unsaturated” Ni-N4-x-Cx sites significantly improves the tolerance to NOx, SOx, volatile organic compounds, and SCN- impurities in aqueous electrolyte, paving the way for SACs capable of CO2RR in industrial conditions. © 2022 American Chemical Society.
Item
Global seafood dose 2023: assessment by an international team
(ICRP, 2023-11-06) Johansen, MP; Carpenter, JG; Charmasson, S; Gwynn, JP; McGinnity, P; Mori, A; Orr, B; Simon-Cornu, M; Osvath, I
It has been known for many years that ingestion dose from seafood is an important component of the background dose rates for billions of consumers worldwide and that eating seafood can contribute proportionally higher dose as compared with terrestrial-sourced foods. However, a well-supported and current estimate of the contribution of seafood to the dose of global consumers is not available. This is mainly because of the difficulty in assembling the underlying data on a global scale, but also due to the varied and dynamic nature of exposures. Global seafood consumption is increasing, diet patterns are shifting (e.g., toward more farmed products), and new inputs of radionuclides into marine systems have occurred (e.g., the Fukushima accident). A new assessment is being conducted on seafood dose in the context of the ongoing stresses on ocean resources and protection of the marine environment. Its global scale makes use of a much-expanded database on radionuclides in seafood (Marine Radioactivity Information System -MARIS) as well as global diet data and updated parameters for dose calculation. The new assessment: • Evaluates global data on 16 natural and anthropogenic radionuclides. • Draws from more than 84,856 activity concentrations data for biota. • Uses seafood consumption data representing approximately 35% of the world population drawn from national and sub-national diet studies. • Develops new correction factors for the loss of 210Po during cooking, radiological decay during storage, as well as the decreases in 210Po in maricultured seafood. • Implements a bespoke Monte Carlo application for calculating seafood dose distributions. • Compiles and evaluates 150+ seafood ingestion dose estimates published in the past 30 years. The new results indicate somewhat higher seafood dose rates for typical global consumers than previous comprehensive assessments (UNSCEAR, MARDOS). Compared with the 150+ previous individual published studies, our distribution of global dose matches closely and helps explain and interpret the previous estimates. Most background seafood dose is from naturally-sourced 210Po (~80%) followed by 210Pb (+10%) and the Ra radionuclides (~7%). A comparatively small background dose (<0.01%) comes from the ambient anthropogenic radionuclides in seafood that derive from worldwide fallout, accidents, releases from waste sites and similar sources. Study outcomes are useful in providing benchmark references for dose assessments performed on the local, regional and national scale for planned facilities or for evaluating accidental releases. They also provide a baseline for quantifying the changes in seafood dose over time. Results show that typical seafood doses are changing as they reflect trends toward more maricultured products (which can have markedly lower levels of 210Po), various stresses and impacts on world fisheries as well as the evolution of seafood production and distribution systems. Numerous researchers and organisations worldwide have provided input into the project. The assessment is being conducted within the IAEA Coordinated Research Project “Behaviour and Effects of Natural and Anthropogenic Radionuclides in the Marine Environment and their Use as Tracers for Oceanography Studies.”