Browsing by Author "Zou, Z"
Now showing 1 - 11 of 11
Results Per Page
Sort Options
- ItemCAVD, towards better characterization of void space for ionic transport analysis(Springer Nature, 2020-05-22) He, B; Ye, AJ; Chi, ST; Mi, PH; Ran, YB; Zhang, LW; Zou, XX; Pu, BW; Zhao, Q; Zou, Z; Wang, D; Zhang, WQ; Zhao, JT; Avdeev, M; Shi, SGeometric crystal structure analysis using three-dimensional Voronoi tessellation provides intuitive insights into the ionic transport behavior of metal-ion electrode materials or solid electrolytes by mapping the void space in a framework onto a network. The existing tools typically consider only the local voids by mapping them with Voronoi polyhedra vertices and then define the mobile ions pathways using the Voronoi edges connecting these vertices. We show that in some structures mobile ions are located on Voronoi polyhedra faces and thus cannot be located by a standard approach. To address this deficiency, we extend the method to include Voronoi faces in the constructed network. This method has been implemented in the CAVD python package. Its effectiveness is demonstrated by 99% recovery rate for the lattice sites of mobile ions in 6,955 Li-, Na-, Mg- and Al-containing ionic compounds extracted from the Inorganic Crystal Structure Database. In addition, various quantitative descriptors of the network can be used to identify and rank the materials and further used in materials databases for machine learning. © 2020, The Author(s)
- ItemCorrelated migration invokes higher Na+‐ion conductivity in NaSICON‐type solid electrolytes(Wiley, 2019-10-01) Zhang, ZZ; Zou, Z; Kaup, K; Xiao, RJ; Shi, S; Avdeev, M; Hu, YS; Wang, D; He, B; Li, H; Huang, XY; Nazar, LF; Chen, LQNa super ion conductor (NaSICON), Na1+nZr2SinP3–nO12 is considered one of the most promising solid electrolytes; however, the underlying mechanism governing ion transport is still not fully understood. Here, the existence of a previously unreported Na5 site in monoclinic Na3Zr2Si2PO12 is unveiled. It is revealed that Na+‐ions tend to migrate in a correlated mechanism, as suggested by a much lower energy barrier compared to the single‐ion migration barrier. Furthermore, computational work uncovers the origin of the improved conductivity in the NaSICON structure, that is, the enhanced correlated migration induced by increasing the Na+‐ion concentration. Systematic impedance studies on doped NaSICON materials bolster this finding. Significant improvements in both the bulk and total ion conductivity (e.g., σbulk = 4.0 mS cm−1, σtotal = 2.4 mS cm−1 at 25 °C) are achieved by increasing the Na content from 3.0 to 3.30–3.55 mol formula unit−1. These improvements stem from the enhanced correlated migration invoked by the increased Coulombic repulsions when more Na+‐ions populate the structure rather than solely from the increased mobile ion carrier concentration. The studies also verify a strategy to enhance ion conductivity, namely, pushing the cations into high energy sites to therefore lower the energy barrier for cation migration. © 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
- ItemEfficient potential-tuning strategy through p-type doping for designing cathodes with ultrahigh energy density(Oxford Academic, 2020-07-27) Wang, ZQ; Wang, D; Zou, Z; Song, T; Ni, DX; Li, ZZ; Shao, XC; Yin, WJ; Wang, YC; Luo, WW; Wu, MS; Avdeev, M; Xu, B; Shi, S; Ouyang, CY; Chen, LQDesigning new cathodes with high capacity and moderate potential is the key to breaking the energy density ceiling imposed by current intercalation chemistry on rechargeable batteries. The carbonaceous materials provide high capacities but their low potentials limit their application to anodes. Here, we show that Fermi level tuning by p-type doping can be an effective way of dramatically raising electrode potential. We demonstrate that Li(Na)BCF2/Li(Na)B2C2F2 exhibit such change in Fermi level, enabling them to accommodate Li+(Na+) with capacities of 290–400 (250–320) mAh g−1 at potentials of 3.4–3.7 (2.7–2.9) V, delivering ultrahigh energy densities of 1000–1500 Wh kg−1. This work presents a new strategy in tuning electrode potential through electronic band structure engineering. © The Author(s) 2020. Creative Commons CC BY Published by Oxford University Press on behalf of China Science Publishing & Media Ltd.
- ItemHigh-throughput screening platform for solid electrolytes combining hierarchical ion-transport prediction algorithms(Springer Nature, 2020-05-21) He, B; Chi, ST; Ye, AJ; Mi, PH; Zhang, LW; Pu, B; Zou, Z; Ran, YB; Zhao, Q; Wang, D; Zhang, WQ; Zhao, JT; Adams, S; Avdeev, M; Shi, SThe combination of a materials database with high-throughput ion-transport calculations is an effective approach to screen for promising solid electrolytes. However, automating the complicated preprocessing involved in currently widely used ion-transport characterization algorithms, such as the first-principles nudged elastic band (FP-NEB) method, remains challenging. Here, we report on high-throughput screening platform for solid electrolytes (SPSE) that integrates a materials database with hierarchical ion-transport calculations realized by implementing empirical algorithms to assist in FP-NEB completing automatic calculation. We first preliminarily screen candidates and determine the approximate ion-transport paths using empirical both geometric analysis and the bond valence site energy method. A chain of images are then automatically generated along these paths for accurate FP-NEB calculation. In addition, an open web interface is actualized to enable access to the SPSE database, thereby facilitating machine learning. This interactive platform provides a workflow toward high-throughput screening for future discovery and design of promising solid electrolytes and the SPSE database is based on the FAIR principles for the benefit of the broad research community. © 2020, The Author(s)
- ItemA highly efficient and informative method to identify ion transport networks in fast ion conductors(Elsevier, 2021-01-15) He, B; Mi, PH; Ye, AJ; Chi, ST; Jiao, Y; Zhang, LW; Pu, BW; Zou, Z; Zhang, WQ; Avdeev, M; Adams, S; Zhao, JT; Shi, SHigh-throughput analysis of the ion transport pathways is critical for screening fast ion conductors. Currently, empirical methods, such as the geometric analysis and bond valence site energy (BVSE) methods, are respectively used for the task. Geometric analysis method can only extract geometric and topological pathway properties without considering the interatomic interactions, while the BVSE method alone does not yield a geometric classification of the sites and interstices forming the pathway. Herein, we propose a highly efficient and informative method to identify interstices and connecting segments constructing an ion transport network by combining topological pathway network and BVSE landscape, which enables to obtain both the geometry and energy profiles of nonequivalent ion transport pathways between adjacent lattice sites. These pathways can be further used as the input for first-principles nudged elastic band calculations with automatically generated chains of images. By performing high-throughput screening of 48,321 Li-, Na-, Mg- and Al-containing ionic compounds from the Inorganic Crystal Structure Database based on the filter combining geometric analysis and BVSE methods, we obtain 1,270 compounds with connected ionic migration pathways of suitable sizes and low migration energy barriers, which include both previously reported fast ion conductors, and new promising materials to be explored further. © 2020 Acta Materialia Inc. Published by Elsevier Ltd.
- ItemIdentifying migration channels and bottlenecks in monoclinic NASICON-type solid electrolytes with hierarchical ion-transport algorithms(Wiley, 2021-09-07) Zou, Z; Ma, N; Wang, AP; Ran, YB; Song, T; He, B; Ye, AJ; Mi, PH; Zhang, LW; Zhou, H; Jiao, Y; Liu, JP; Wang, D; Li, YJ; Avdeev, M; Shi, SMonoclinic natrium superionic conductors (NASICON; Na3Zr2Si2PO12) are well-known Na-ion solid electrolytes which have been studied for 40 years. However, due to the low symmetry of the crystal structure, identifying the migration channels of monoclinic NASICON accurately still remains unsolved. Here, a cross-verified study of Na+ diffusion pathways in monoclinic NASICON by integrating geometric analysis of channels and bottlenecks, bond-valence energy landscapes analysis, and ab initio molecular dynamics simulations is presented. The diffusion limiting bottlenecks, the anisotropy of conductivity, and the time and temperature dependence of Na+ distribution over the channels are characterized and strategies for improving both bulk and total conductivity of monoclinic NASICON-type solid electrolytes are proposed. This set of hierarchical ion-transport algorithms not only shows the efficiency and practicality in revealing the ion transport behavior in monoclinic NASICON-type materials but also provides guidelines for optimizing their conductive properties that can be readily extended to other solid electrolytes. © 2021 Wiley-VCH GmbH
- ItemIdentifying migration channels and bottlenecks in monoclinic NASICON‐type solid electrolytes with hierarchical ion‐transport algorithms(Wiley, 2021-09-07) Zou, Z; Ma, N; Wang, AP; Ran, YB; Song, T; He, B; Ye, AJ; Mi, PH; Zhang, LW; Zhou, H; Jiao, Y; Liu, JP; Wang, D; Li, YJ; Avdeev, M; Shi, SQMonoclinic natrium superionic conductors (NASICON; Na3Zr2Si2PO12) are well‐known Na‐ion solid electrolytes which have been studied for 40 years. However, due to the low symmetry of the crystal structure, identifying the migration channels of monoclinic NASICON accurately still remains unsolved. Here, a cross‐verified study of Na+ diffusion pathways in monoclinic NASICON by integrating geometric analysis of channels and bottlenecks, bond‐valence energy landscapes analysis, and ab initio molecular dynamics simulations is presented. The diffusion limiting bottlenecks, the anisotropy of conductivity, and the time and temperature dependence of Na+ distribution over the channels are characterized and strategies for improving both bulk and total conductivity of monoclinic NASICON‐type solid electrolytes are proposed. This set of hierarchical ion‐transport algorithms not only shows the efficiency and practicality in revealing the ion transport behavior in monoclinic NASICON‐type materials but also provides guidelines for optimizing their conductive properties that can be readily extended to other solid electrolytes. © 1999-2024 John Wiley & Sons, Inc.
- ItemThe origin of solvent deprotonation in LiI‐added aprotic electrolytes for Li‐O2 batteries(Wiley, 2023-03-07) Wang, AP; Wu, XH; Zou, Z; Qiao, Y; Wang, D; Xing, L; Chen, Y; Lin, Y; Avdeev, M; Shi, SQLiI and LiBr have been employed as soluble redox mediators (RMs) in electrolytes to address the sluggish oxygen evolution reaction kinetics during charging in aprotic Li‐O2 batteries. Compared to LiBr, LiI exhibits a redox potential closer to the theoretical one of discharge products, indicating a higher energy efficiency. However, the reason for the occurrence of solvent deprotonation in LiI‐added electrolytes remains unclear. Here, by combining ab initio calculations and experimental validation, we find that it is the nucleophile that triggers the solvent deprotonation and LiOH formation via nucleophilic attack, rather than the increased solvent acidity or the elongated C−H bond as previously suggested. As a comparison, the formation of in LiBr‐added electrolytes is found to be thermodynamically unfavorable, explaining the absence of LiOH formation. These findings provide important insight into the solvent deprotonation and pave the way for the practical application of LiI RM in aprotic Li‐O2 batteries. © 1999-2024 John Wiley & Sons, Inc or related companies.
- ItemThe origin of solvent deprotonation in LiI‐added aprotic electrolytes for Li‐O2 batteries(Wiley, 2023-03-27) Wang, AP; Wu, XH; Zou, Z; Qiao, Y; Wang, D; Xing, L; Chen, Y; Lin, Y; Avdeev, M; Shi, SQLiI and LiBr have been employed as soluble redox mediators (RMs) in electrolytes to address the sluggish oxygen evolution reaction kinetics during charging in aprotic Li‐O2 batteries. Compared to LiBr, LiI exhibits a redox potential closer to the theoretical one of discharge products, indicating a higher energy efficiency. However, the reason for the occurrence of solvent deprotonation in LiI‐added electrolytes remains unclear. Here, by combining ab initio calculations and experimental validation, we find that it is the nucleophile that triggers the solvent deprotonation and LiOH formation via nucleophilic attack, rather than the increased solvent acidity or the elongated C−H bond as previously suggested. As a comparison, the formation of in LiBr‐added electrolytes is found to be thermodynamically unfavorable, explaining the absence of LiOH formation. These findings provide important insight into the solvent deprotonation and pave the way for the practical application of LiI RM in aprotic Li‐O2 batteries. © 1999-2024 John Wiley & Sons, Inc
- ItemUltrastable all-solid-state sodium rechargeable batteries(American Chemical Society, 2020-08-11) Yang, J; Liu, G; Avdeev, M; Wan, H; Han, F; Shen, L; Zou, Z; Shi, S; Hu, YS; Wang, CS; Yao, XThe insufficient ionic conductivity of oxide-based solid electrolytes and the large interfacial resistance between the cathode material and the solid electrolyte severely limit the performance of room-temperature all-solid-state sodium rechargeable batteries. A NASICON solid electrolyte Na3.4Zr1.9Zn0.1Si2.2P0.8O12, with superior room-temperature conductivity of 5.27 × 10–3 S cm–1, is achieved by simultaneous substitution of Zr4+ by aliovalent Zn2+ and P5+ by Si4+ in Na3Zr2Si2PO12. The bulk conductivity and grain boundary conductivity of Na3.4Zr1.9Zn0.1Si2.2P0.8O12 are nearly 20 times and almost 50 times greater than those of pristine Na3Zr2Si2PO12, respectively. The FeS2||polydopamine-Na3.4Zr1.9Zn0.1Si2.2P0.8O12||Na all-solid-state sodium batteries, with a polydopamine modification thin layer between the solid electrolyte and the cathode, maintain a high reversible capacity of 236.5 mAh g–1 at a 0.1 C rate for 100 cycles and a capacity of 133.1 mAh g–1 at 0.5 C for 300 cycles, demonstrating high performance for all-solid-state sodium batteries. © 2020 American Chemical Society
- ItemUncovering the potential of M1‐site‐activated NASICON cathodes for Zn‐Ion batteries(Wiley, 2020-02-20) Hu, P; Zou, Z; Sun, XW; Wang, D; Ma, J; Kong, QY; Xiao, DD; Gu, L; Zhou, XH; Zhao, JW; Dong, SM; He, B; Avdeev, M; Shi, S; Cui, GL; Chen, LQThere is a long‐standing consciousness that the rhombohedral NASICON‐type compounds as promising cathodes for Li+/Na+ batteries should have inactive M1(6b) sites with ion (de)intercalation occurring only in the M2 (18e) sites. Of particular significance is that M1 sites active for charge/discharge are commonly considered undesirable because the ion diffusion tends to be disrupted by the irregular occupation of channels, which accelerates the deterioration of battery. However, it is found that the structural stability can be substantially improved by the mixed occupation of Na+/Zn2+ at both M1 and M2 when using NaV2(PO4)3 (NVP) as a cathode for Zn‐ion batteries. The results of atomic‐scale scanning transmission electron microscopy, analysis of ab initio molecular dynamics simulations, and an accurate bond‐valence‐based structural model reveal that the improvement is due to the facile migration of Zn2+ in NVP, which is enabled by a concerted Na+/Zn2+ transfer mechanism. In addition, significant improvement of the electronic conductivity and mechanical properties is achieved in Zn2+‐intercalated ZnNaV2(PO4)3 in comparison with those of Na3V2(PO4)3. This work not only provides in‐depth insight into Zn2+ intercalation and dynamics in NVP unlocked by activating the M1 sites, but also opens a new route toward design of improved NASICON cathodes. © 1999-2021 John Wiley & Sons, Inc.