Browsing by Author "He, B"
Now showing 1 - 14 of 14
Results Per Page
Sort Options
- ItemCAVD, towards better characterization of void space for ionic transport analysis(Springer Nature, 2020-05-22) He, B; Ye, AJ; Chi, ST; Mi, PH; Ran, YB; Zhang, LW; Zou, XX; Pu, BW; Zhao, Q; Zou, Z; Wang, D; Zhang, WQ; Zhao, JT; Avdeev, M; Shi, SGeometric crystal structure analysis using three-dimensional Voronoi tessellation provides intuitive insights into the ionic transport behavior of metal-ion electrode materials or solid electrolytes by mapping the void space in a framework onto a network. The existing tools typically consider only the local voids by mapping them with Voronoi polyhedra vertices and then define the mobile ions pathways using the Voronoi edges connecting these vertices. We show that in some structures mobile ions are located on Voronoi polyhedra faces and thus cannot be located by a standard approach. To address this deficiency, we extend the method to include Voronoi faces in the constructed network. This method has been implemented in the CAVD python package. Its effectiveness is demonstrated by 99% recovery rate for the lattice sites of mobile ions in 6,955 Li-, Na-, Mg- and Al-containing ionic compounds extracted from the Inorganic Crystal Structure Database. In addition, various quantitative descriptors of the network can be used to identify and rank the materials and further used in materials databases for machine learning. © 2020, The Author(s)
- ItemCorrelated migration invokes higher Na+‐ion conductivity in NaSICON‐type solid electrolytes(Wiley, 2019-10-01) Zhang, ZZ; Zou, Z; Kaup, K; Xiao, RJ; Shi, S; Avdeev, M; Hu, YS; Wang, D; He, B; Li, H; Huang, XY; Nazar, LF; Chen, LQNa super ion conductor (NaSICON), Na1+nZr2SinP3–nO12 is considered one of the most promising solid electrolytes; however, the underlying mechanism governing ion transport is still not fully understood. Here, the existence of a previously unreported Na5 site in monoclinic Na3Zr2Si2PO12 is unveiled. It is revealed that Na+‐ions tend to migrate in a correlated mechanism, as suggested by a much lower energy barrier compared to the single‐ion migration barrier. Furthermore, computational work uncovers the origin of the improved conductivity in the NaSICON structure, that is, the enhanced correlated migration induced by increasing the Na+‐ion concentration. Systematic impedance studies on doped NaSICON materials bolster this finding. Significant improvements in both the bulk and total ion conductivity (e.g., σbulk = 4.0 mS cm−1, σtotal = 2.4 mS cm−1 at 25 °C) are achieved by increasing the Na content from 3.0 to 3.30–3.55 mol formula unit−1. These improvements stem from the enhanced correlated migration invoked by the increased Coulombic repulsions when more Na+‐ions populate the structure rather than solely from the increased mobile ion carrier concentration. The studies also verify a strategy to enhance ion conductivity, namely, pushing the cations into high energy sites to therefore lower the energy barrier for cation migration. © 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
- ItemA database of ionic transport characteristics for over 29 000 inorganic compounds(Wiley, 2020-06-25) Zhang, LW; He, B; Zhao, Q; Zou, ZY; Chi, ST; Mi, PH; Ye, AJ; Li, YJ; Wang, D; Avdeev, M; Adams, S; Shi, STransport characteristics of ionic conductors play a key role in the performance of electrochemical devices such as solid-state batteries, solid-oxide fuel cells, and sensors. Despite the significance of the transport characteristics, they have been experimentally measured only for a very small fraction of all inorganic compounds, which limits the technological progress. To address this deficiency, a database containing crystal structure information, ion migration channel connectivity information, and 3D channel maps for over 29 000 inorganic compounds is presented. The database currently contains ionic transport characteristics for all potential cation and anion conductors, including Li+, Na+, K+, Ag+, Cu(2)+, Mg2+, Zn2+, Ca2+, Al3+, F−, and O2−, and this number is growing steadily. The methods used to characterize materials in the database are a combination of structure geometric analysis based on Voronoi decomposition and bond valence site energy (BVSE) calculations, which yield interstitial sites, transport channels, and BVSE activation energy. The computational details are illustrated on several typical compounds. This database is created to accelerate the screening of fast ionic conductors and to accumulate descriptors for machine learning, providing a foundation for large-scale research on ion migration in inorganic materials.© 1999-2021 John Wiley & Sons, Inc.
- ItemEMFDTW: an automated crystallographic identification tool supporting multiple comparison criteria(American Chemical Society, 2024-07-13) He, B; Meng, Y; Gong, Z; Wang, K; Jiang, Z; Avdeev, M; Shi, SQIdentification of the same and similar crystal structures assists in searching for duplicate materials data and discovering prototype structures. Although several structure identification methods exist, their requirements for the input information limit their ability to accurately and automatically process structures within big materials databases and especially distinguish disordered ion conductor structures due to the site occupancy uncertainty of migration ions. Here, we introduce an automated crystal structure identification method called EMFDTW, in which a set of eigen-subspace modular functions (EMFs) is derived from a distance matrix incorporating site type identifiers, and then the similarity between them is measured through dynamic time warping (DTW). In this way, not only the conventional spatial sites in the crystal structure but also the atomic attributes (type, occupancy, oxidation state, magnetic moment, etc.) on the sites can be considered as the comparative features. Furthermore, by conducting a skeleton similarity analysis on 113,586 crystal structures sourced from the crystallography open database and the inorganic crystal structure database, we establish a database of 17,340 skeleton prototypes, which paves the way for searching potential ionic conductors. Our work provides an easy-to-use tool to analyze complex crystal structures, providing new insights for the discovery and design of new materials. © 2024 American Chemical Society.
- ItemFFMDFPA: a FAIRification framework for materials data with no-code flexible semi-structured parser and application programming interfaces(American Chemical Society, 2023-08-28) He, B; Gong, Z; Avdeev, M; Shi, SThe FAIR Data Principles are guidelines to ensure Findability, Accessibility, Interoperability, and Reusability of digital resources, which are essential to accelerate data-driven materials science. Despite the development and growing adoption of the FAIR principles, appropriate implementation solutions and software to make data FAIR are still sparse, particularly in standardization of heterogeneous data and subsequent data access. Here, we introduce a FAIRification Framework for Materials Data with No-Code Flexible Semi-Structured Parser and API (FFMDFPA) (API, application programming interface) for raw data processing. Using a template-based parser, FFMDFPA can extract and transform semistructured data in various text formats, providing the flexibility to extend data manipulation without coding. Additionally, FFMDFPA provides a standardized API with efficient query syntax that facilitates seamless data sharing. Taking various text files generated by computational software as examples, we demonstrate the potential utility of FFMDFPA. This work offers important insights toward efficient utilization and reuse of materials data, and the data semantic manipulation implemented in the parser and API can be extended to textual data, which has implications for future data FAIRification. © American Chemical Society
- ItemHigh-throughput screening platform for solid electrolytes combining hierarchical ion-transport prediction algorithms(Springer Nature, 2020-05-21) He, B; Chi, ST; Ye, AJ; Mi, PH; Zhang, LW; Pu, B; Zou, Z; Ran, YB; Zhao, Q; Wang, D; Zhang, WQ; Zhao, JT; Adams, S; Avdeev, M; Shi, SThe combination of a materials database with high-throughput ion-transport calculations is an effective approach to screen for promising solid electrolytes. However, automating the complicated preprocessing involved in currently widely used ion-transport characterization algorithms, such as the first-principles nudged elastic band (FP-NEB) method, remains challenging. Here, we report on high-throughput screening platform for solid electrolytes (SPSE) that integrates a materials database with hierarchical ion-transport calculations realized by implementing empirical algorithms to assist in FP-NEB completing automatic calculation. We first preliminarily screen candidates and determine the approximate ion-transport paths using empirical both geometric analysis and the bond valence site energy method. A chain of images are then automatically generated along these paths for accurate FP-NEB calculation. In addition, an open web interface is actualized to enable access to the SPSE database, thereby facilitating machine learning. This interactive platform provides a workflow toward high-throughput screening for future discovery and design of promising solid electrolytes and the SPSE database is based on the FAIR principles for the benefit of the broad research community. © 2020, The Author(s)
- ItemA highly efficient and informative method to identify ion transport networks in fast ion conductors(Elsevier, 2021-01-15) He, B; Mi, PH; Ye, AJ; Chi, ST; Jiao, Y; Zhang, LW; Pu, BW; Zou, Z; Zhang, WQ; Avdeev, M; Adams, S; Zhao, JT; Shi, SHigh-throughput analysis of the ion transport pathways is critical for screening fast ion conductors. Currently, empirical methods, such as the geometric analysis and bond valence site energy (BVSE) methods, are respectively used for the task. Geometric analysis method can only extract geometric and topological pathway properties without considering the interatomic interactions, while the BVSE method alone does not yield a geometric classification of the sites and interstices forming the pathway. Herein, we propose a highly efficient and informative method to identify interstices and connecting segments constructing an ion transport network by combining topological pathway network and BVSE landscape, which enables to obtain both the geometry and energy profiles of nonequivalent ion transport pathways between adjacent lattice sites. These pathways can be further used as the input for first-principles nudged elastic band calculations with automatically generated chains of images. By performing high-throughput screening of 48,321 Li-, Na-, Mg- and Al-containing ionic compounds from the Inorganic Crystal Structure Database based on the filter combining geometric analysis and BVSE methods, we obtain 1,270 compounds with connected ionic migration pathways of suitable sizes and low migration energy barriers, which include both previously reported fast ion conductors, and new promising materials to be explored further. © 2020 Acta Materialia Inc. Published by Elsevier Ltd.
- ItemIdentifying descriptors for Li+ conduction in cubic Li-argyrodites via hierarchically encoding crystal structure and inferring causality(Elsevier, 2021-09-01) Zhao, Q; Zhang, LW; He, B; Ye, AJ; Avdeev, M; Chen, LQ; Shi, SIdentifying descriptors linked to Li+ conduction enables rational design of solid state electrolytes (SSEs) for advanced lithium ion batteries, but it is hindered by the diverse and confounding descriptors. To address this, by integrating global and local effects of Li+ conduction environment, we develop a generic method of hierarchically encoding crystal structure (HECS) and inferring causality to identify descriptors for Li+ conduction in SSEs. Taking the cubic Li-argyrodites as an example, 32 HECS-descriptors are constructed, encompassing composition, structure, conduction pathway, ion distribution, and special ions derived from the unit cell information. Partial correlation analysis reveals that the smaller anion size plays a significant role in achieving lower activation energy, which results from the competing effects between the lattice space and bottleneck size controlled by framework site disorder. Moreover, the promising candidates are suggested, in which Li6-xPS5-xCl1+x (e.g., Li5.5PS4.5Cl1.5 with the room ionic conductivity of 9.4mS cm−1 and the activation energy of 0.29eV) have been experimentally evaluated as excellent candidates for practical SSEs and the rest are novel compositions waiting for validation. Our work establishes a rational correlation between the HECS-descriptors and Li+ conduction and the proposed approach can be extended to other types of SSE materials. © 2021 Elsevier B.V.
- ItemIdentifying migration channels and bottlenecks in monoclinic NASICON-type solid electrolytes with hierarchical ion-transport algorithms(Wiley, 2021-09-07) Zou, Z; Ma, N; Wang, AP; Ran, YB; Song, T; He, B; Ye, AJ; Mi, PH; Zhang, LW; Zhou, H; Jiao, Y; Liu, JP; Wang, D; Li, YJ; Avdeev, M; Shi, SMonoclinic natrium superionic conductors (NASICON; Na3Zr2Si2PO12) are well-known Na-ion solid electrolytes which have been studied for 40 years. However, due to the low symmetry of the crystal structure, identifying the migration channels of monoclinic NASICON accurately still remains unsolved. Here, a cross-verified study of Na+ diffusion pathways in monoclinic NASICON by integrating geometric analysis of channels and bottlenecks, bond-valence energy landscapes analysis, and ab initio molecular dynamics simulations is presented. The diffusion limiting bottlenecks, the anisotropy of conductivity, and the time and temperature dependence of Na+ distribution over the channels are characterized and strategies for improving both bulk and total conductivity of monoclinic NASICON-type solid electrolytes are proposed. This set of hierarchical ion-transport algorithms not only shows the efficiency and practicality in revealing the ion transport behavior in monoclinic NASICON-type materials but also provides guidelines for optimizing their conductive properties that can be readily extended to other solid electrolytes. © 2021 Wiley-VCH GmbH
- ItemIdentifying migration channels and bottlenecks in monoclinic NASICON‐type solid electrolytes with hierarchical ion‐transport algorithms(Wiley, 2021-09-07) Zou, Z; Ma, N; Wang, AP; Ran, YB; Song, T; He, B; Ye, AJ; Mi, PH; Zhang, LW; Zhou, H; Jiao, Y; Liu, JP; Wang, D; Li, YJ; Avdeev, M; Shi, SQMonoclinic natrium superionic conductors (NASICON; Na3Zr2Si2PO12) are well‐known Na‐ion solid electrolytes which have been studied for 40 years. However, due to the low symmetry of the crystal structure, identifying the migration channels of monoclinic NASICON accurately still remains unsolved. Here, a cross‐verified study of Na+ diffusion pathways in monoclinic NASICON by integrating geometric analysis of channels and bottlenecks, bond‐valence energy landscapes analysis, and ab initio molecular dynamics simulations is presented. The diffusion limiting bottlenecks, the anisotropy of conductivity, and the time and temperature dependence of Na+ distribution over the channels are characterized and strategies for improving both bulk and total conductivity of monoclinic NASICON‐type solid electrolytes are proposed. This set of hierarchical ion‐transport algorithms not only shows the efficiency and practicality in revealing the ion transport behavior in monoclinic NASICON‐type materials but also provides guidelines for optimizing their conductive properties that can be readily extended to other solid electrolytes. © 1999-2024 John Wiley & Sons, Inc.
- ItemRelationships between Na+ distribution, concerted migration, and diffusion properties in rhombohedral NASICON(Wiley, 2020-06-24) Zou, ZY; Ma, N; Wang, AP; Ran, YB; Song, T; Jiao, Y; Zhou, H; Shi, W; He, B; Wang, D; Li, YJ; Avdeev, M; Shi, SRhombohedral NaZr2(PO4)3 is the prototype of all the NASICON-type materials. The ionic diffusion in these rhombohedral NASICON materials is highly influenced by the ionic migration channels and the bottlenecks in the channels which have been extensively studied. However, no consensus is reached as to which one is the preferential ionic migration channel. Moreover, the relationships between the Na+ distribution over the multiple available sites, concerted migration, and diffusion properties remain elusive. Using ab initio molecular dynamics simulations, here it is shown that the Na+ ions tend to migrate through the Na1–Na3–Na2–Na3–Na1 channels rather than through the Na2–Na3–Na3–Na2 channels. There are two types of concerted migration mechanisms: two Na+ ions located at the adjacent Na1 and Na2 sites can migrate either in the same direction or at an angle. Both mechanisms exhibit relatively low migration barriers owing to the potential energy conversion during the Na+ ions migration process. Redistribution of Na+ ions from the most stable Na1 sites to Na2 on increasing Na+ total content further facilitates the concerted migration and promotes the Na+ ion mobility. The work establishes a connection between the Na+ concentration in rhombohedral NASICON materials and their diffusion properties. © 1999-2021 John Wiley & Sons, Inc.
- ItemSoftware for evaluating ionic conductivity of inorganic–polymer composite solid electrolytes(American Association for the Advancement of Science, 2023-01) Ding, Y; He, B; Wang, D; Avdeev, M; Li, YJ; Shi, SInorganic–polymer composite solid electrolytes (IPCSEs) obtained by filling the polymer matrix with inorganic materials usually have higher ionic conductivity compared with individual phases. This important increase in ionic conductivity is explained in terms of the new percolation paths formed by the highly conductive interface between inorganic filler and polymer. The conduction in such systems can be investigated using the effective medium theory (EMT) and random resistance model (RRM). EMT can be used to analyze the effect of filler size on the ionic conductivity of disordered IPCSEs, while RRM can describe the composites with inorganic fillers of various shapes (nano-particles, nano-wires, nano-sheets, and nano-networks) in ordered or disordered arrangement. Herein, we present software evaluating the ionic conductivity in IPCSEs by combining EMT and RRM. The approach is illustrated by considering the size, shapes, and arrangements of inorganic fillers. The ionic conductivities of different types of IPCSEs are predicted theoretically and found in good agreement with the experimental values. The software can be used as an auxiliary tool to design composite electrolytes. © 2023 Yuqing Ding et al. Exclusive licensee Beijing Institute of Technology Press. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY 4.0)
- ItemSoftware for evaluating long-range electrostatic interactions based on the Ewald summation and its application to electrochemical energy storage materials(American Chemical Society, 2022-07-28) Shi, W; He, B; Pu, B; Ren, Y; Avdeev, M; Shi, SQElectrochemical characteristics such as open-circuit voltage and ionic conductivity of electrochemical energy storage materials are easily affected, typically negatively, by mobile ion/vacancy ordering. Ordered phases can be identified based on the lattice gas model and electrostatic energy screening. However, the evaluation of long-range electrostatic energy is not straightforward because of the conditional convergence. The Ewald method decomposes the electrostatic energy into a real space part and a reciprocal space part, achieving a fast convergence in each. Due to its high computational efficiency, Ewald-based techniques are widely used in analyzing characteristics of electrochemical energy storage materials. In this work, we present software not only integrating Ewald techniques for two-dimensional and three-dimensional periodic systems but also combining the Ewald method with the lattice matching algorithm and bond valence. It is aimed to become a useful tool for screening stable structures and interfaces and identifying the ionic transport channels of cation conductors.
- ItemUncovering the potential of M1‐site‐activated NASICON cathodes for Zn‐Ion batteries(Wiley, 2020-02-20) Hu, P; Zou, Z; Sun, XW; Wang, D; Ma, J; Kong, QY; Xiao, DD; Gu, L; Zhou, XH; Zhao, JW; Dong, SM; He, B; Avdeev, M; Shi, S; Cui, GL; Chen, LQThere is a long‐standing consciousness that the rhombohedral NASICON‐type compounds as promising cathodes for Li+/Na+ batteries should have inactive M1(6b) sites with ion (de)intercalation occurring only in the M2 (18e) sites. Of particular significance is that M1 sites active for charge/discharge are commonly considered undesirable because the ion diffusion tends to be disrupted by the irregular occupation of channels, which accelerates the deterioration of battery. However, it is found that the structural stability can be substantially improved by the mixed occupation of Na+/Zn2+ at both M1 and M2 when using NaV2(PO4)3 (NVP) as a cathode for Zn‐ion batteries. The results of atomic‐scale scanning transmission electron microscopy, analysis of ab initio molecular dynamics simulations, and an accurate bond‐valence‐based structural model reveal that the improvement is due to the facile migration of Zn2+ in NVP, which is enabled by a concerted Na+/Zn2+ transfer mechanism. In addition, significant improvement of the electronic conductivity and mechanical properties is achieved in Zn2+‐intercalated ZnNaV2(PO4)3 in comparison with those of Na3V2(PO4)3. This work not only provides in‐depth insight into Zn2+ intercalation and dynamics in NVP unlocked by activating the M1 sites, but also opens a new route toward design of improved NASICON cathodes. © 1999-2021 John Wiley & Sons, Inc.