Please use this identifier to cite or link to this item:
Title: Electrical conductivity and defect disorder of tantalum‐doped TiO2
Authors: Alim, MA
Bak, T
Atanacio, AJ
Du Plessis, J
Zhou, MF
Davis, J
Nowotny, J
Keywords: Electrical properties
Point defects
Electric conductivity
Titanium oxides
Issue Date: 2-May-2017
Publisher: John Wiley & Sons
Citation: Alim, M. A., Bak, T., Atanacio, A., Du Plessis, J., Zhou, M., Davis, J., & Nowotny, J. (2017). Electrical conductivity and defect disorder of tantalum‐doped TiO2. Journal of the American Ceramic Society, 100(9), 4088-4100. doi:10.1111/jace.14959
Abstract: The present work reports the electrical properties of polycrystalline Ta‐doped TiO2 (0.39 at.% Ta) determined in situ at elevated temperatures (1173‐1323 K) in the gas phase of controlled oxygen activity (10−12 Pa to 105 Pa). The effect of oxygen activity on the electrical conductivity and thermoelectric power of TiO2 is discussed in terms of defect disorder, including (1) the intrinsic electronic disorder that is governed by electronic compensation in the strongly reducing regime, (2) the extrinsic electronic disorder that is governed by electronic charge compensation in the reducing regime, and (3) the extrinsic ionic disorder that is governed by ionic compensation in the oxidizing regime. It is shown that tantalum ions are incorporated into the titanium sublattice of TiO2 leading to the formation of donor‐type energy levels. The Arrhenius‐type plot of the electrical conductivity data leads to the determination of the formation enthalpy terms. The obtained results are considered in terms of the effect of tantalum and oxygen activity on the defect disorder and the associated key performance‐related properties in the light‐induced partial water oxidation. © 2017 The American Ceramic Society
ISSN: 1551-2916
Appears in Collections:Journal Articles

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.