Chemical crystallography at the Australian Synchrotron MX Beamlines
Loading...
Date
2017-12-03
Journal Title
Journal ISSN
Volume Title
Publisher
SCANZ
Abstract
The macromolecular (MX) beamlines at the Australian synchrotron are mixed use between the structural biology and chemical crystallography (CX) communities. Since commissioning the high throughput MX1 bending magnet and the MX2 microfocus undulator beamlines have proven very successful for both communities.
The deployment of a 16M Eiger detector (funded by Australian Structural Biology laboratories and Australian Cancer Research Foundation) has changed the ‘standard’ MX2 collection for CX from 1° oscillation in 1 second over 360°, which takes ~15 min with the beam attenuated to give a balance of resolution vs detector overloads to a new shutter less 360° oscillation yielding 3600 frames in 36 sec.
This increase in data volume and experiment turnaround time has led to a number of challenges for the workflow for the users and highlighted the biggest dead time for beam is now: search and secure for hand mounting, and robot sample change time for automated sample handling including remote use. Indicative use of MX2 from completed search and secure in a 24-hour experiment with hand mounting (preferred by CX) was 188 completed searches. Maximum robot-mounted samples over the same duration is 288.
There is a robot upgrade under development to take sample change times from ~4 min to ~30 sec, and it is anticipated that MX1 will also receive a detector upgrade. This increase in throughput is having a significant impact on our ability to return analysis on the experiment in real time, as well as deliver auto-processed data in a timely fashion (new computational hardware is on its way).
Given these dramatic increases in experimental throughput, what are the addition opportunities that may be embraced by the crystallographic community in Australia? What is the future for chemical crystallography at the MX beamlines? A review of the current developments that are underway and some discussion of what may lie in the future will be presented.
Description
Keywords
Crystallography, Australia, Radiation detectors, Measuring instruments, Beam bending magnets, Wiggler magnets
Citation
Price, J., Aishima, J., Aragao, D., Eriksson, D., Panjikar, S., Riboldi-Tunnicliffe, A., Williamson, R., & Caradoc-Davies, T. (2017). Chemical crystallography at the Australian Synchrotron MX Beamlines. Paper presented at CRYSTAL 31, the 31st Biennial Conference of the Society of Crystallographers in Australia and New Zealand, Pullman Bunker Bay, Western Australia, 3 – 7 December 2017. Retrieved from: https://crystal31.com/wp-content/uploads/2017/11/SCANZ-Crystal-31-2017-Book-of-Abstracts-FINAL.pdf#page=56