Browsing by Author "Price, JR"
Now showing 1 - 16 of 16
Results Per Page
Sort Options
- Item“114”-Type nitrides LnAl(Si4−xAlx)N7Oδ with unusual [AlN6] octahedral coordination(Wiley, 2017-02-28) Huang, S; Huang, Z; Cao, P; Zujovic, Z; Price, JR; Avdeev, M; Que, M; Suzuki, F; Kido, T; Ouyang, X; Kaji, H; Fang, M; Liu, YG; Gao, W; Söhnel, TAluminum–nitrogen six-fold octahedral coordination, [AlN6], is unusual and has only been seen in the high-pressure rocksalt-type aluminum nitride or some complex compounds. Herein we report novel nitrides LnAl(Si4−xAlx)N7Oδ (Ln=La, Sm), the first inorganic compounds with [AlN6] coordination prepared via non-high-pressure synthesis. Structure refinements of neutron powder diffraction and single-crystal X-ray diffraction data show that these compounds crystallize in the hexagonal Swedenborgite structure type with P63mc symmetry where Ln and Al atoms locate in anticuboctahedral and octahedral interstitials, respectively, between the triangular and Kagomé layers of [SiN4] tetrahedra. Solid-state NMR data of high-purity La-114 powders confirm the unusual [AlN6] coordination. These compounds are the first examples of the “33-114” sub-type in the “114” family. The additional site for over-stoichiometric oxygen in the structure of 114-type compounds was also identified. © 1999-2021 John Wiley & Sons, Inc.
- Item3d transition metal complexes with a julolidine–quinoline based ligand: structures, spectroscopy and optical properties(Royal Society of Chemistry, 2015-12-07) Fanna, DJ; Zhang, YJ; Li, L; Karatchevtseva, I; Shepherd, ND; Azim, A; Price, JR; Aldrich-Wright, JR; Reynolds, JK; Li, FA Schiff base type ligand with the combination of the julolidine and the quinoline groups has been reported as a potential chemosensor in detecting the cobalt(II) ion among other heavy and transition metal ions in solution. However, no crystal structure of such a ligand with any metal ions has been reported. In this work, its complexation with 3d transition metal ions (Mn(II), Co(II), Ni(II), Cu(II) and Zn(II)) has been investigated with five new complexes being synthesised, and spectroscopically and structurally characterised. [Mn2L2(CH3OH)2(CH3COO)2]•CH3OH (1) {HL (C22H21N3O) = ((E)-9-((quinolin-8-ylimino)methyl)-1,2,3,5,6,7-hexahydropyrido[3,2,1-ij]quinolin-8-ol)} shows a dinuclear structure with two Mn : L : acetate (1 : 1 : 1) units bridged by two methanol molecules. [CoL2(NO3)]•CH3OH•H2O (2) and [NiL2]•H2O (3) exhibit mononuclear structures with a Co : L or Ni : L ratio of 1 : 2. [CuL(CH3COO)]•1/3CH3OH (4) demonstrates a mononuclear structure and the Cu ion has a square planar coordination polyhedron with a L ligand and a highly non-symmetrical acetate anion. [Zn2L2(CH3COO)2]•CH3OH (5) has two types of dinuclear units, both with two ZnL units bridged by two acetate anions but in three different bridging coordination modes. Their vibrational modes, absorption and photoluminescence properties have also been investigated. © 2016 The Partner Organisations
- ItemChemical crystallography at the Australian Synchrotron MX Beamlines(SCANZ, 2017-12-03) Price, JR; Aishima, J; Aragao, D; Eriksson, D; Panjikar, S; Riboldi-Tunnicliffe, A; Williamson, R; Caradoc-Davies, TTThe macromolecular (MX) beamlines at the Australian synchrotron are mixed use between the structural biology and chemical crystallography (CX) communities. Since commissioning the high throughput MX1 bending magnet and the MX2 microfocus undulator beamlines have proven very successful for both communities. The deployment of a 16M Eiger detector (funded by Australian Structural Biology laboratories and Australian Cancer Research Foundation) has changed the ‘standard’ MX2 collection for CX from 1° oscillation in 1 second over 360°, which takes ~15 min with the beam attenuated to give a balance of resolution vs detector overloads to a new shutter less 360° oscillation yielding 3600 frames in 36 sec. This increase in data volume and experiment turnaround time has led to a number of challenges for the workflow for the users and highlighted the biggest dead time for beam is now: search and secure for hand mounting, and robot sample change time for automated sample handling including remote use. Indicative use of MX2 from completed search and secure in a 24-hour experiment with hand mounting (preferred by CX) was 188 completed searches. Maximum robot-mounted samples over the same duration is 288. There is a robot upgrade under development to take sample change times from ~4 min to ~30 sec, and it is anticipated that MX1 will also receive a detector upgrade. This increase in throughput is having a significant impact on our ability to return analysis on the experiment in real time, as well as deliver auto-processed data in a timely fashion (new computational hardware is on its way). Given these dramatic increases in experimental throughput, what are the addition opportunities that may be embraced by the crystallographic community in Australia? What is the future for chemical crystallography at the MX beamlines? A review of the current developments that are underway and some discussion of what may lie in the future will be presented.
- ItemCrystal structure of posnjakite formed in the first crystal water-cooling line of the ANSTO Melbourne Australian Synchrotron MX1 Double Crystal Monochromator(International Union of Crystallography (IUCr), 2020-06-30T14:00:00Z) Mills, SJ; Aishima, J; Aragao, D; Caradoc-Davies, TT; Cowieson, NP; Gee, CL; Ericsson, D; Harrop, SJ; Panjikar, S; Smith, KML; Riboldi-Tunnicliffe, A; Williamson, R; Price, JRExceptionally large crystals of posnjakite, CuSO(OH)(HO), formed during corrosion of a Swagelock(tm) Snubber copper gasket within the MX1 beamline at the ANSTO-Melbourne, Australian Synchrotron. The crystal structure was solved using synchrotron radiation to = 0.029 and revealed a structure based upon [Cu(OH)(HO)O] sheets, which contain Jahn-Teller-distorted Cu octa-hedra. The sulfate tetra-hedra are bonded to one side of the sheet corner sharing and linked to successive sheets extensive hydrogen bonds. The sulfate tetra-hedra are split and rotated, which enables additional hydrogen bonds. © Mills et al. 2020.
- ItemDioxo-vanadium(V), oxo-rhenium(V) and dioxo-uranium(VI) complexes with a tridentate Schiff base ligand(Royal Society of Chemistry, 2016-08-03) Zhang, YJ; Fanna, DJ; Shepherd, ND; Karatchevtseva, I; Lu, KT; Kong, L; Price, JRThe complexation of a julolidine–quinoline based tridentate ligand with three oxo-metal ions, dioxo-vanadium(V), oxo-rhenium(V) and dioxo-uranium(VI), has been investigated with four new complexes being synthesised and structurally characterised. (VO2L)·2/3H2O (1) {HL (C22H21N3O) = ((E)-9-((quinolin-8-ylimino)methyl)-1,2,3,5,6,7-hexahydropyrido[3,2,1-ij]quinolin-8-ol)} has a VO2L neutral mononuclear structure with a five-fold coordinated vanadium metal centre in a distorted trigonal bipyramidal geometry. (ReOL2)2(ReCl6)·7DMF (2) [DMF = dimethylformamide] exhibits a mixed valent rhenium complex with a (ReOL2)+ cationic unit in a distorted octahedral metal coordination geometry, charge balanced with (ReCl6)2− anions. [(UO2)L(H2O)2]2·2(NO3)·HL·4H2O (3) and [(UO2)L(CH3OH)2](NO3)·CH3OH (4) both have (UO2L)+ cationic mononuclear structures with either coordinated water or methanol molecules in pentagonal bipyramidal coordination geometries for the uranium metal centres. Intra-/intermolecular interactions including hydrogen bonding and π–π interactions are common and have been discussed. In addition, optical absorption and photoluminescence properties have been investigated. © 2016 The Royal Society of Chemistry
- ItemDual-supramolecular contacts induce extreme Hofmann framework distortion and multi-stepped spin-crossover(Royal Society of Chemistry, 2021-01-13) Ahmed, M; Brand, HEA; Peterson, VK; Clegg, JK; Kepert, CJ; Price, JR; Powell, BJ; Neville, SMAn extended nitro-functionalised 1,2,4-triazole ligand has been used to induce considerable lattice distortion in a 2-D Hofmann framework material via competing supramolecular interactions. Single crystal X-ray diffraction analyses on [Fe3(N-cintrz)6(Pd(CN)4)3]·6H2O (N-cintrz: (E)-3-(2-nitrophenyl)acrylaldehyde) reveal a substantial deviation from a regular Hofmann structure, in particular as the intra- and inter-layer contacts are dominated by hydrogen-bonding interactions rather than the typical π-stacking arrays. Also, the 2-D Hofmann layers show an assortment of ligand conformations and local FeII coordination environments driven by the optimisation of competing supramolecular contacts. Temperature-dependent magnetic susceptibility measurements reveal a two-step spin crossover (SCO) transition. Variable temperature structural analyses show that the two crystallographically distinct FeII centres, which are arranged in stripes (2[thin space (1/6-em)]:[thin space (1/6-em)]1 ratio) within each Hofmann layer, undergo a cooperative HS ↔ HS/LS ↔ LS (HS = high spin, LS = low spin) transition without periodic spin-state ordering. The mismatch between crystallographic (2[thin space (1/6-em)]:[thin space (1/6-em)]1) and spin-state (1[thin space (1/6-em)]:[thin space (1/6-em)]1) periodicity at the HS[thin space (1/6-em)]:[thin space (1/6-em)]LS step provides key insight into the competition (frustration) between elastic interactions and crystallographically driven order. © The Royal Society of Chemistry 2021
- ItemDysprosium complexes with mono-/di-carboxylate ligands—from simple dimers to 2D and 3D frameworks(Elsevier, 2014-11-01) Zhang, YJ; Bhadbhade, MM; Scales, N; Karatchevtseva, I; Price, JR; Lu, KT; Lumpkin, GRFour dysprosium (Dy) single carboxylates, a formate, a propionate, a butyrate and an oxalate have been synthesized and structurally characterized. The structure of Dy(HCO2)3 (1) contains nine-fold coordinated Dy polyhedra in perfect tricapped trigonal prisms. They are linked through trigonal O atoms forming 1D pillars which are further linked together through tricapped O atoms into a 3D pillared metal organic framework. The network structure is stable up to 360 °C. The structure of [Dy2(C2O4)3(H2O)6]·2.5H2O (2) contains nine-fold coordinated Dy polyhedra linking together through μ2-bridging oxalate anions into a 2D hexagonal layered structure. Both [Dy2(Pr)6(H2O)4]·(HPr)0.5 (3) [Pr=(C2H5CO2)−1] and [Dy2(Bu)6(H2O)4] (4) [Bu=(C3H7CO2)−1] have similar di-nuclear structures. The Raman vibration modes of the complexes have been investigated. © 2016 Elsevier B.V.
- ItemExploring the mechanism of elastically flexible crystals by automatic analysis(International Union of Crystallography, 2021-08-14) Thompson, A; Price, JR; Smith, K; Clegg, JKA recent surge in reports of crystals exhibiting elastic flexibility has changed the way we view these materials. With potential applications in flexible electronics, in depth research is required to understand why some crystals can be tied into knots, while others shatter under an applied force. Different rationales for elastic flexibility have been proposed: many crystals have been engineered to impart flexibility through isotropic interactions, although other elastic crystals have anisotropic interactions [1]. Clearly, the different interactions present result in diverse bending mechanisms. The mechanism of flexibility in elastic crystals can be resolved on an atomic-scale by use of micro-focused synchrotron radiation [2]. By examining the localised crystal structure at multiple positions across a bent crystal, the deformations of the cell parameters can be quantified (Fig. 1). Isotropic and anisotropic crystals have been analysed using this technique to determine their respective mechanisms. Unfortunately, structural mapping quickly produces large volumes of data, and manual processing would be inefficient when there are only small changes to the data. Instead, software was developed to automatically process these datasets. It is capable of taking raw frames and providing finalised CIF files with results graphically analysed. This allows for greater insight into these elastic crystals, as more data can be analysed in a reasonable time frame. This software, CX-ASAP, consists of a series of independent modules which can be placed together into an auto-processing pipeline. The advantage of this modular approach, is the fact that it is applicable to a wider range of large crystallographic dataset analysis, such as variable temperature experiments. The main consideration of this software is the limit of computer knowledge, as there are key steps during the automation where user input is mandatory for reliable results. © The Authors
- ItemGuest removal and external pressure variation induce spin crossover in halogen-functionalized 2-D Hofmann frameworks(American Chemical Society, 2020-09-27) Brennan, AT; Zenere, KA; Brand, HEA; Price, JR; Bhadbhade, MM; Turner, GF; Moggach, SA; Valverde-Muñoz, FJ; Real, JA; Clegg, JK; Kepert, CJ; Neville, SMThe effect of halogen functionalization on the spin crossover (SCO) properties of a family of 2-D Hofmann framework materials, [Fe(II)Pd(CN)4(thioX)2]·2H2O (X = Cl and Br; thioCl = (E)-1-(5-chlorothiophen-2-yl)-N-(4H-1,2,4-triazol-4-yl)methanimine) and thioBr = (E)-1-(5-bromothiophen-2-yl)-N-(4H-1,2,4-triazol-4-yl)methanimine)), is reported. Inclusion of both the chloro- and bromo-functionalized ligands into the Hofmann-type frameworks (1Cl·2H2O and 2Br·2H2O) results in a blocking of spin-state transitions due to internal chemical pressure effects derived by the collective steric bulk of the halogen atoms and guest molecules. Cooperative one-step SCO transitions are revealed by either guest removal or the application of external physical pressure. Notably, removal of solvent water reveals a robust framework scaffold with only marginal variation between the solvated and desolvated structures (as investigated by powder and single crystal X-ray diffraction). Yet, one-step complete SCO transitions are revealed in 1Cl and 2Br with a transition temperature shift between the analogues due to various steric, structural, and electronic considerations. SCO can also be induced in the solvated species, 1Cl·2H2O and 2Br·2H2O, with the application of physical pressure, revealing a complete one-step SCO transition above 0.62 GPa (as investigated by magnetic susceptibility and single crystal X-ray diffraction measurements). © 2020 American Chemical Society
- ItemHydrothermal synthesis, structures and properties of two uranyl oxide hydroxyl hydrate phases with Co(II) or Ni(II) ions(Royal Society of Chemistry., 2016-04-11) Zhang, YJ; Čejka, J; Lumpkin, GR; Tran, TT; Aharonovich, I; Karatchevtseva, I; Price, JR; Scales, N; Lu, KTTwo new iso-structured uranyl oxide hydroxyl hydrate (UOH) phases with the incorporation of cobalt(II) or nickel(II) ions have been synthesised under hydrothermal conditions and structurally characterised. Both K4Co(OH)3(H2O)9[(UO2)12(O)7(OH)13] (1) and K4Ni(OH)3(H2O)9[(UO2)12(O)7(OH)13] (2) have two-dimensional (2D) polymeric uranyl oxohydroxyl layers with either potassium and hydroxyl cobalt(II) (1) or potassium and hydroxyl nickel(II) (2) ions between layers via uranyl–cation interactions. This work highlights the feasibility of making new UOH phases via a hydrothermal route at relatively higher solution pHs. It also demonstrates that other transition metal ions which are readily available in the environment may also be incorporated into such UOH phases during the natural weathering of uraninite as well as during the storage and disposal of spent nuclear fuels. © 2016 The Royal Society of Chemistry
- ItemKinetics vs. thermodynamics: a unique crystal transformation from a uranyl peroxo-nanocluster to a nanoclustered uranyl polyborate(Royal Society of Chemistry, 2014-07-30) Zhang, YJ; Bhadbhade, MM; Price, JR; Karatchevtseva, I; Collison, D; Lumpkin, GRA novel method to prepare a nano-clustered uranyl polyborate in aqueous solution at room temperature has been developed. The initially formed kinetically favoured sodium uranyl peroxide yellow crystals transform, in the presence of boric acid, to the thermodynamically stable sodium uranyl polyborate in light yellow-green single crystal form. © Royal Society of Chemistry 2016
- ItemLanthanide mononuclear complexes with a tridentate Schiff base ligand: structures, spectroscopies and properties(Elsevier, 2019-03-21) Zhang, YJ; Avdeev, M; Price, JR; Karatchevtseva, I; Fanna, DJ; Chironi, I; Lu, KTA series of six lanthanide mononuclear complexes with a julolidine-quinoline based tridentate Schiff base ligand have been synthesized and structurally characterized. The complexes [NdL2(CH3OH)(NO3)]·CH3OH (1) and [LnL2(NO3)] [Ln = Eu (2), Gd (3), Dy (4), Ho (5), Lu (6)] {HL (C22H21N3O) = ((E)-9-((quinolin-8-ylimino)methyl)-1,2,3,5,6,7-hexahydropyrido[3,2,1-ij]quinolin-8-ol)} all have mononuclear structures with a metal to ligand ratio of 1:2. The Ln(III) ions are nine-fold coordinated by two tridentate Schiff base ligands and a bidentate nitrate anion except for complex 1 in which Nd(III) ion is ten-fold coordinated with an additional MeOH molecule. The coordination of a bidentate nitrate anion makes chirality to the complexes with equal enantiomers presence in the solid state. Lanthanide contraction has been observed with the average Ln–O/Ln–N bond lengths decreasing along the lanthanide series. Vibrational modes (2–5), electronic structures (1–3), thermal stability (2) and magnetic properties (3) have been further investigated and reported. Crown Copyright © 2019 Published by Elsevier Ltd.
- ItemOne-dimensional uranium(VI) coordination polymers with pyridinecarboxylate ligands(Elsevier B.V., 2016-07-27) Shepherd, ND; Zhang, YJ; Karatchevtseva, I; Price, JR; Kong, L; Scales, N; Lumpkin, GRA method to produce picolinate ligand in situ under hydrothermal conditions has been used to synthesize four uranyl hydroxyl, oxo- and oxohydroxyl picolinato complexes. (UO2)(OH)(Pic) (1) (HPic = picolinic acid) contains 7-fold coordinated uranyl hydroxyl dimers linked through μ2-bridging Pic ligands forming a one-dimensional (1D) polymer. (NH4)[(UO2)3(O)2(OH)(Pic)2] (2) consists of 7-fold coordinated uranyl oxohydroxyl trinuclear units linked through both μ2- and μ3-Pic ligands forming a 1D polymer. (NH4)[(UO2)2(O)2(Pic)] (3) is constructed with 7-fold coordinated uranyl oxo-dinuclear units linked through oxo- and μ3-Pic ligands forming a 1D polymer. (NH4)[(UO2)4(O)2(OH)2(Pic)2(INT)]·H2O (4) (HINT = isonicotinic acid) is made of 7-fold coordinated uranyl oxohydroxyl tetranuclear units linked through both Pic and INT ligands forming a 1D polymer. All four polymers are thermal robust to 350 °C. Raman spectroscopy confirmed the presence of uranyl ion and Pic ligand. In addition, red enhanced fluorescence emissions have been observed for both 1 and 4. The synthesis method, with the advantage of controlling uranyl hydrolysis and generating ligand in situ, provides a more reliable way to make new coordination polymers of carboxylate ligands with various uranyl hydrolysis species. © 2016 Elsevier Ltd.
- ItemRecent and future developments on the Australian Synchrotron MX2 beamline driven by the Eiger 16M detector deployment(Society of Crystallographers in Australia and New Zealand, 2017-12-03) Aragao, D; Aishima, J; Clarken, R; Eriksson, D; Macedo, S; Moll, A; Mudie, N; Panjikar, S; Price, JR; Riboldi-Tunnicliffe, A; Williamson, R; Caradoc-Davies, TTThe new pixel array detector — Eiger 16M — deployed on MX2 in February 2017 has now generated more than 152 Tb of data compared with 18 Tb in the same period last year using a CCD based detector. This has not only revolutionised the speed that datasets are collected but also put challenges in the way we collect, take notes, process and store data. Here we will present how some of these challenges have been tackled and what are the future developments already being worked on for deployment in the next 12 months. We will also briefly describe one of the most common traps on collecting data on the Eiger 16M.
- ItemSpectroscopic studies and crystal structures of double thorium(IV) oxalates with sodium ions(John Wiley and Sons, 2013-11-08) Zhang, YJ; Bhadbhade, MM; Karatchevtseva, I; Gao, J; Price, JR; Lumpkin, GRTwo new double thorium oxalates with sodium ions have been prepared and characterized by using scanning electron microscopy/energy-dispersive spectroscopy (SEM/EDS), Raman spectroscopy and single-crystal X-ray diffraction. The crystal structure of Na4[Th(C2O4)4]·5.5H2O (1) contains infinite chains, [Th(μ2-C2O4)2(C2O4)3]n4n–, with three terminating bidentate and two bridging tetradentate oxalate ligands. The crystal structure of Na10[Th2(C2O4)9]·15H2O (2) comprises unique dimers, [Th2(μ2-C2O4)(C2O4)8]10–, with Th atoms being coordinated by five oxalato ligands, four terminating bidentate and one bridging tetradentate. The structure is the first dimer of tetravalent actinide oxalato complexes. The spectroscopic results are in good agreement with the crystal structures. © 2013, Wiley-Vch Verlag.
- ItemThorium(IV) and uranium(IV) complexes with cucurbit[5]uril(American Chemical Society, 2018-06-27) Zhang, YJ; Bhadbhade, MM; Avdeev, M; Price, JR; Karatchevtseva, I; Li, Q; Tao, Z; Wei, GTetravalent thorium and uranium complexes with cucurbit[5]uril (Q[5]) were investigated with eight new complexes being synthesized and structurally characterized. [Th(Q[5])(OH)(H2O)2]6·18NO3·nH2O (1) has a hexagonal nanowheel structure with each of the six Th4+ ions being cap-coordinated by a Q[5] and monodentate-coordinated to the nearby Q[5]. [Th(Q[5])(HCOO)(H2O)4][Th(NO3)5(H2O)2]2[Th(NO3)3(HCOO)(H2O)2]0.5·NO3·nH2O (2) has a heteroleptic mononuclear structure with a Th4+ ion cap-coordinated on one side of the Q[5] portal and monodentate-coordinated to a formate anion inside the Q[5] cavity. [KTh1.5(Q[5])Cl(NO3)3][Th(NO3)5(H2O)2]·2NO3·2.5H2O (3) has a heterometallic structure with both Th4+ and K+ ions each occupying one side of the two Q[5] portals forming a capsule. [CsTh(Q[5])Cl(NO3)2(H2O)3]·2NO3·nH2O (4) has a heterometallic 1D polymeric structure with both Th4+ and Cs+ ions each occupying one side of the two Q[5] portals, forming monomers which are linked together by sharing two water molecules and one carbonyl oxygen atom between Th4+ and Cs+ ions. [Th(Q[5])Cl(H2O)][CdCl3][CdCl4]·0.5HCl·4H2O (5), [Th(Q[5])Cl(H2O)][Ru2OCl9(H2O)]·0.5HCl·9.5H2O (6), [Th(Q[5])Cl(H2O)][IrCl6]1.5·3H2O (7), and [U(Q[5])Cl(H2O)][ZnCl3(H2O)][(ZnCl4)]·8H2O (8) have similar 1D polymeric structures with Th4+/U4+ ions cap-coordinated on one side of a Q[5] and bidentate coordinated to the nearby Q[5]. The transition metal chlorides act as anions for charge compensation as well as structure inducers via cation–anion interactions forming various anion patterns around the 1D polymers. Actinide contraction has been observed in the early actinide series. © 2018 American Chemical Society