Structural evolution of high energy density V3+/V4+ mixed valent Na3V2O2x(PO4)2F3−2x (x = 0.8) sodium vanadium fluorophosphate using in situ synchrotron X-ray powder diffraction

dc.contributor.authorSerras, Pen_AU
dc.contributor.authorPalomares, Ven_AU
dc.contributor.authorRojo, Ten_AU
dc.contributor.authorBrand, HEAen_AU
dc.contributor.authorSharma, Nen_AU
dc.date.accessioned2021-12-22T05:06:38Zen_AU
dc.date.available2021-12-22T05:06:38Zen_AU
dc.date.issued2014-01-31en_AU
dc.date.statistics2021-11-15en_AU
dc.descriptionThis article is licensed under a Creative Commons Attribution-Non Commercial 3.0 Unported licence.en_AU
dc.description.abstractSodium-ion batteries have become good candidates for energy storage technology. For this purpose it is crucial to search for and optimize new electrode and electrolyte materials. Sodium vanadium fluorophosphates are considered promising cathodes but further studies are required to elucidate their electrochemical and structural behavior. Therefore, this work focuses on the time-resolved in situ synchrotron X-ray powder diffraction study of Na 3V2O2x(PO4)2F 3-2x (x = 0.8) while electrochemically cycling. Reaction mechanism evolution, lattice parameters and sodium evolution, and the maximum possible sodium extraction under the applied electrochemical constraints, are some of the features that have been determined for both a fresh and an offline pre-cycled cell. The reaction mechanism evolution undergoes a solid solution reaction with a two-phase region for the first lower-potential plateau while a predominantly solid solution behavior is observed for the second higher-potential plateau. Lattice and volume evolution is clearly dependent on the Na insertion/extraction mechanism, the sodium occupancy and distribution amongst the two crystallographic sites, and the electrochemical cycling history. The comparison between the fresh and the pre-cycled cell shows that there is a Na site preference depending on the cell and history and that Na swaps from one site to the other during cycling. This suggests sodium site occupancy and mobility in the tunnels is interchangeable and fluid, a favorable characteristic for a cathode in a sodium-ion battery. © 2014 The Royal Society of Chemistry. This article is Open Access.en_AU
dc.identifier.citationSerras, P., Palomares, V., Rojo, T., Brand, H. E., & Sharma, N. (2014). Structural evolution of high energy density V3+/V4+ mixed valent Na3V2O2x(PO4)2F3−2x(x= 0.8) sodium vanadium fluorophosphate using in situ synchrotron X-ray powder diffraction. Journal of Materials Chemistry A, 2(21), 7766-7779. doi:10.1039/C4TA00773Een_AU
dc.identifier.issn2050-7488en_AU
dc.identifier.issue21en_AU
dc.identifier.journaltitleJournal of Materials Chemistry Aen_AU
dc.identifier.pagination7766-7779en_AU
dc.identifier.urihttps://doi.org/10.1039/C4TA00773Een_AU
dc.identifier.urihttps://apo.ansto.gov.au/dspace/handle/10238/12635en_AU
dc.identifier.volume2en_AU
dc.language.isoenen_AU
dc.publisherRoyal Society of Chemistryen_AU
dc.subjectValenceen_AU
dc.subjectSodiumen_AU
dc.subjectSodium ionsen_AU
dc.subjectElectric batteriesen_AU
dc.subjectSodium compoundsen_AU
dc.subjectX-ray diffractionen_AU
dc.subjectSynchrotronsen_AU
dc.subjectEnergy storage systemsen_AU
dc.titleStructural evolution of high energy density V3+/V4+ mixed valent Na3V2O2x(PO4)2F3−2x (x = 0.8) sodium vanadium fluorophosphate using in situ synchrotron X-ray powder diffractionen_AU
dc.typeJournal Articleen_AU
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
c4ta00773e.pdf
Size:
2.31 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.63 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections