The promise of high-entropy materials for high-performance rechargeable Li-ion and Na-ion batteries

Abstract
Our growing dependence on rechargeable Li/Na-ion batteries calls for substantial improvements in the electrochemical performance of battery materials, including cathodes, anodes, and electrolytes. However, the performance enhancements based on traditional modification methods of elemental doping and surface coating are still far from the target of high-performance rechargeable batteries. Fortunately, the recent emergence of high-entropy materials preserving a stable solid-state phase for energy-related applications provides unprecedented flexibility and variability in materials composition and electronic structure, opening new avenues to accelerate battery materials development. This perspective first presents clear qualitative and quantitative definitions for high-entropy battery materials, as well as summarizes the enhancement mechanisms. Then, we comprehensively review state-of-the-art research progress and highlight key factors in the rational design of advanced high-entropy battery materials from both experimental and calculational aspects. Moreover, the challenges limiting the progress of this research are presented, alongside insights and approaches to address these issues at the research forefront. Finally, we outline potential directions for extending the future development of the high-entropy strategy to solve other critical issues in battery materials research. This perspective will guide researchers in their studies toward the development of high-performance rechargeable Li-ion and Na-ion batteries. © 2024 Elsevier Inc. - Open Archive
Description
W.Z. gratefully acknowledges the support of the China Scholarship Council (No. 202108430035). This work is supported by the Australian Research Council under grants DP200101862, DP210101486, and FL210100050.
Keywords
Entropy, Sodium, Lithium, Lithium ion batteries, Performance, Cathodes, Anodes, Electrolytes, Materials, Metal-metal Oxide batteries
Citation
Zheng, W., Liang, G., Liu, Q., Li, J., Yuwono, J. A., Zhang, S., Peterson, V. K., & Guo, Z. (2023). The promise of high-entropy materials for high-performance rechargeable Li-ion and Na-ion batteries. Joule, 7(12), 2732-2748. doi:10.1016/j.joule.2023.10.016
Collections