Influence of synthesis routes on the crystallography, morphology, and electrochemistry of Li2MnO3

dc.contributor.authorMenon, ASen_AU
dc.contributor.authorOjwang, DOen_AU
dc.contributor.authorWilhammar, Ten_AU
dc.contributor.authorPeterson, VKen_AU
dc.contributor.authorEdström, Ken_AU
dc.contributor.authorGomez, CPen_AU
dc.contributor.authorBrant, WRen_AU
dc.date.accessioned2021-08-11T04:40:05Zen_AU
dc.date.available2021-08-11T04:40:05Zen_AU
dc.date.issued2020-02-05en_AU
dc.date.statistics2021-08-06en_AU
dc.description.abstractWith the potential of delivering reversible capacities of up to 300 mAh/g, Li-rich transition-metal oxides hold great promise as cathode materials for future Li-ion batteries. However, a cohesive synthesis–structure–electrochemistry relationship is still lacking for these materials, which impedes progress in the field. This work investigates how and why different synthesis routes, specifically solid-state and modified Pechini sol–gel methods, affect the properties of Li2MnO3, a compositionally simple member of this material system. Through a comprehensive investigation of the synthesis mechanism along with crystallographic, morphological, and electrochemical characterization, the effects of different synthesis routes were found to predominantly influence the degree of stacking faults and particle morphology. That is, the modified Pechini method produced isotropic spherical particles with approximately 57% faulting and the solid-state samples possessed heterogeneous morphology with approximately 43% faulting probability. Inevitably, these differences lead to variations in electrochemical performance. This study accentuates the importance of understanding how synthesis affects the electrochemistry of these materials, which is critical considering the crystallographic and electrochemical complexities of the class of materials more generally. The methodology employed here is extendable to studying synthesis–property relationships of other compositionally complex Li-rich layered oxide systems. © 2020 American Chemical Societyen_AU
dc.identifier.citationMenon, A. S., Ojwang, D. O., Willhammar, T., Peterson, V. K., Edström, K., Gomez, C. P., & Brant, W. R. (2020). Influence of synthesis routes on the crystallography, morphology, and electrochemistry of Li2MnO3. ACS Applied Materials & Interfaces, 12(5), 5939-5950. doi:10.1021/acsami.9b20754en_AU
dc.identifier.issn1944-8252en_AU
dc.identifier.issue5en_AU
dc.identifier.journaltitleACS Applied Materials & Interfacesen_AU
dc.identifier.pagination5939-5950en_AU
dc.identifier.urihttps://doi.org/10.1021/acsami.9b20754en_AU
dc.identifier.urihttps://apo.ansto.gov.au/dspace/handle/10238/11319en_AU
dc.identifier.volume12en_AU
dc.language.isoenen_AU
dc.publisherAmerican Chemical Societyen_AU
dc.subjectGranular materialsen_AU
dc.subjectSynthesisen_AU
dc.subjectCrystallographyen_AU
dc.subjectMorphologyen_AU
dc.subjectElectrochemistryen_AU
dc.subjectCathodesen_AU
dc.subjectMaterialsen_AU
dc.subjectLithiumen_AU
dc.subjectManganeseen_AU
dc.subjectOxygenen_AU
dc.subjectOxidesen_AU
dc.titleInfluence of synthesis routes on the crystallography, morphology, and electrochemistry of Li2MnO3en_AU
dc.typeJournal Articleen_AU
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.63 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections