Response of thin-skinned sandwich panels to contact loading with flat-ended cylindrical punches: experiments, numerical simulations and neutron diffraction measurements
No Thumbnail Available
Date
2015-09-01
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Abstract
The response of aluminium foam-cored sandwich panels to localised contact loading was investigated experimentally and numerically using flat-ended cylindrical punch of four varying sizes. ALPORAS and ALULIGHT closed-cell foams of 15 mm thickness with 0.3 mm thick aluminium face sheets (of 236 MPa yield strength) were used to manufacture the sandwich panels. Face sheet fracturing at the perimeter of the indenter, in addition to foam cells collapse beneath the indenter and tearing of the cell walls at the perimeter of the indenter were the major failure mechanisms of the sandwich panels, irrespective of the strength and density of the underlying foam core. The authors employed a 3D model in ABAQUS/Explicit to evaluate the indentation event, the skin failure of the face sheets and carry out a sensitivity study of the panel's response. Using the foam model of Deshpande and Fleck combined with the forming limit diagram (FLD) of the aluminium face sheet, good quantitative and qualitative correlations between experiments and simulations were achieved. The higher plastic compliance of the ALPORAS led to increased bending of the sheet metal and delayed the onset of sheet necking and failure. ALULIGHT-cored panels exhibited higher load bearing and energy absorption capacity, compared with ALPORAS cores, due to their higher foam and cell densities and higher yield strength of the cell walls. Additionally, they exhibited greater propensity for strain hardening as evidenced by mechanical testing and the neutron diffraction measurements, which demonstrated the development of macroscopically measurable stresses at higher strains. At these conditions the ALULIGHT response upon compaction becomes akin to the response of bulk material with measurable elastic modulus and evident Poisson effect. Copyright © 2017 Elsevier B.V.
Description
Keywords
Mechanical properties, Finite element method, Mechanical tests, Neutron diffraction, Aluminium, Fracturing
Citation
Saleh, M., Luzin, V., Toppler, K., & Kabir, Kaveh. (2015). Response of thin-skinned sandwich panels to contact loading with flat-ended cylindrical punches: experiments, numerical simulations and neutron diffraction measurements. Composites Part B: Engineering, 78, 415-430. doi:10.1016/j.compositesb.2015.04.001