The role of plasticity theory on the predicted residual stress field of weld structures

No Thumbnail Available
Journal Title
Journal ISSN
Volume Title
Materials Science Forum
Constitutive plasticity theory is commonly applied to the numerical analysis of welds in one of three ways: using an isotropic hardening model, a kinematic hardening model, or a mixed isotropic-kinematic hardening model. The choice of model is not entirely dependent on its numerical accuracy, however, as a lack of empirical data will often necessitate the use of a specific approach. The present paper seeks to identify the accuracy of each formalism through direct comparison of the predicted and actual post-weld residual stress field developed in a three-pass 316LN stainless steel slot weldment. From these comparisons, it is clear that while the isotropic hardening model tends to noticeably over-predict and the kinematic hardening model slightly under-predict the residual post-weld stress field, the results using a mixed hardening model are quantitatively accurate. Even though the kinematic hardening model generally provides more accurate results when compared to an isotropic hardening formalism, the latter might be a more appealing choice to engineers requiring a conservative design regarding weld residual stress. © 2014, Trans Tech Publications.
Plasticity, Welded joints, Isotopes, Data, Particle kinematics, Residual stresses
Muránsky, O., Hamelin, C. J., Smith, M. C., Bendeich, P. J., & Edwards, L. (2014). The role of plasticity theory on the predicted residual stress field of weld structures. Materials Science Forum, 772, 65-71 doi:10.4028/