Derivation of a macroscale formulation for a class of nonlinear partial differential equations.

dc.contributor.authorPantelis, Gen_AU
dc.date.accessioned2007-11-22T04:20:12Zen_AU
dc.date.accessioned2010-04-30T04:30:07Zen_AU
dc.date.available2007-11-22T04:20:12Zen_AU
dc.date.available2010-04-30T04:30:07Zen_AU
dc.date.issued1995-05en_AU
dc.description.abstractA macroscale formulation is constructed from a system of partial differential equations which govern the microscale dependent variables. The construction is based upon the requirement that the solutions of the macroscale partial differential equations satisfy in some approximate sense the system of partial differential equations associated with the microscale. These results are restricted to the class of nonlinear partial differential equations which can be expressed as polynomials of the dependent variables and their partial derivatives up to second order. A linear approximation of transformations of second order contact manifolds is employed.en_AU
dc.identifier.citationPamtelis, G. (1995). Derivation of a macroscale formulation for a class of nonlinear partial differential equations (ANSTO/E722). Lucas Heights, NSW: Australian Atomic Energy Commission.en_AU
dc.identifier.govdoc201en_AU
dc.identifier.isbn0642599602en_AU
dc.identifier.issn10307745en_AU
dc.identifier.otherANSTO-E-722en_AU
dc.identifier.placeofpublicationLucas Heights, New South Walesen_AU
dc.identifier.urihttp://apo.ansto.gov.au/dspace/handle/10238/370en_AU
dc.language.isoen_auen_AU
dc.publisherAustralian Nuclear Science and Technology Organisationen_AU
dc.subjectDifferential equationsen_AU
dc.subjectFluid flowen_AU
dc.subjectSimulationen_AU
dc.subjectPorous materialsen_AU
dc.titleDerivation of a macroscale formulation for a class of nonlinear partial differential equations.en_AU
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ANSTO-E-722.pdf
Size:
883.37 KB
Format:
Adobe Portable Document Format
Description: