Eigenvalves of the discrete ordinates equations in slab geometry.

dc.date.accessioned2007-11-22T04:25:33Zen_AU
dc.date.accessioned2010-04-30T04:36:48Zen_AU
dc.date.available2007-11-22T04:25:33Zen_AU
dc.date.available2010-04-30T04:36:48Zen_AU
dc.date.issued1975-09en_AU
dc.description.abstractThe discrete ordinates approximation of the one—group, source—free, neutron transport equation has been solved analytically for slab geometry. The resulting eigenvalues are functions of both the angular quadrature and the spatial mesh used in the discrete ordinates equations. The dependence of the eigenvalues on the angular quadrature has been examined for the three limiting cases of c < < 1, | 1-c | < < 1 and c > > 1, where c = σε/σt. Both the diamond difference and step function approximations have been considered in the evaluation of the eigenvalue dependence on the spatial mesh size. When the neutron flux is well described by a function of the form exp(—κχ), the diamond difference approximation gives an eigenvalue κd≈κ(1 + (κ∆)2/12), where κ is the eigenvalue for small values of the mesh size ∆, while the step function approximation gives an eigenvalue κε≈κ(1—0.4 σε∆).en_AU
dc.identifier.citationDonnelly, I. J. (1975). Eigenvalves of the discrete ordinates equations in slab geometry. (AAEC/E360). Lucas Heights, NSW: Australian Atomic Energy Commission.en_AU
dc.identifier.govdoc577en_AU
dc.identifier.isbn0642996911en_AU
dc.identifier.otherAAEC-E-360en_AU
dc.identifier.placeofpublicationLucas Heights, New South Walesen_AU
dc.identifier.urihttp://apo.ansto.gov.au/dspace/handle/10238/567en_AU
dc.language.isoen_auen_AU
dc.publisherAustralian Atomic Energy Commissionen_AU
dc.subjectAnalytical solutionen_AU
dc.subjectAnisotropyen_AU
dc.subjectGeometryen_AU
dc.subjectNeutron fluxen_AU
dc.subjectScatteringen_AU
dc.subjectNeutron transport theoryen_AU
dc.titleEigenvalves of the discrete ordinates equations in slab geometry.en_AU
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
AAEC-E-360.pdf
Size:
590.23 KB
Format:
Adobe Portable Document Format
Description: