Pentavalent manganese luminescence: designing narrow-band near-infrared light-emitting diodes as next-generation compact light sources
dc.contributor.author | Rajendran, V | en_AU |
dc.contributor.author | Chen, KC | en_AU |
dc.contributor.author | Huang, WT | en_AU |
dc.contributor.author | Majewska, N | en_AU |
dc.contributor.author | Leśniewski, T | en_AU |
dc.contributor.author | Grzegorczyk, M | en_AU |
dc.contributor.author | Mahlik, S | en_AU |
dc.contributor.author | Leniec, G | en_AU |
dc.contributor.author | Kaczmarek, SM | en_AU |
dc.contributor.author | Pang, WK | en_AU |
dc.contributor.author | Peterson, VK | en_AU |
dc.contributor.author | Lu, KM | en_AU |
dc.contributor.author | Chang, H | en_AU |
dc.contributor.author | Liu, RS | en_AU |
dc.date.accessioned | 2025-04-08T04:56:22Z | en_AU |
dc.date.available | 2025-04-08T04:56:22Z | en_AU |
dc.date.issued | 2023-11-30 | en_AU |
dc.date.statistics | 2024-09-11 | en_AU |
dc.description.abstract | Manganese in the pentavalent state (Mn5+) is both rare and central in materials exhibiting narrow-band near-infrared (NIR) emission and is highly sought after for phosphor-converted light-emitting diodes as promising candidates for future miniature solid-state NIR light source. We develop the Ca14Zn6Ga10-xMnxO35 (x = 0.3, 0.5, 1.0, 1.25, 1.5, and 3.0) series that exhibit simultaneous Mn4+ (650-750 nm) and Mn5+ (1100-1250 nm) luminescence. We reveal a preferential occupancy of Mn in regular octahedral and tetrahedral environments, with the short bond length between these responsible for luminescence. We present a theoretical spin-orbital interaction model in which breaking the spin selection rule permits the luminescence of Mn4+ and Mn5+. A total photon flux of 87.5 mW under a 7 mA driving current demonstrates its potential for real-time application. This work pushes our understanding of achieving Mn5+ luminescence and opens the way for the design of Mn5+-based narrow-band NIR phosphors. © 2022 American Chemical Society. | en_AU |
dc.description.sponsorship | This work was supported by the National Science and Technology Council in Taiwan (Contract Nos. NSTC 109-2113-M-002-020-MY3 and NSTC 110-2923-M-002-017-MY3), the National Science Center Poland Grant Opus (No. 2016/23/B/ST3/03911 and No. 2018/31/B/ST4/00924), and The National Centre for Research and Development Poland Grant (No. PL-TW/VIII/1/2021). Neutron powder diffraction data were obtained under the ANSTO neutron beamtime proposal MI13193. | en_AU |
dc.identifier.citation | Rajendran, V., Chen, K.-C., Huang, W.-T., Majewska, N., Leśniewski, T., Grzegorczyk, M., Mahlik, S., Leniec, G., Kaczmarek, S. M., Pang, W. K., Peterson, V. K., Lu, K.-M., Chang, H., & Liu, R.-S. (2023). Pentavalent manganese luminescence: designing narrow-band near-infrared light-emitting diodes as next-generation compact light sources. ACS Energy Letters, 8(1), 289-295. doi:10.1021/acsenergylett.2c02403 | en_AU |
dc.identifier.issn | 2380-8195 | en_AU |
dc.identifier.issue | 1 | en_AU |
dc.identifier.journaltitle | ACS Energy Letters | en_AU |
dc.identifier.pagination | 289-295 | en_AU |
dc.identifier.uri | https://doi.org/10.1021/acsenergylett.2c02403 | en_AU |
dc.identifier.uri | https://apo.ansto.gov.au/handle/10238/16135 | en_AU |
dc.identifier.volume | 8 | en_AU |
dc.language | English | en_AU |
dc.language.iso | en | en_AU |
dc.publisher | American Chemical Society | en_AU |
dc.subject | Luminescence | en_AU |
dc.subject | Orbits | en_AU |
dc.subject | Spin | en_AU |
dc.subject | Photons | en_AU |
dc.subject | Phosphors | en_AU |
dc.subject | Gallium | en_AU |
dc.subject | Zinc | en_AU |
dc.subject | Calcium | en_AU |
dc.subject | Manganese | en_AU |
dc.subject | Silicon diodes | en_AU |
dc.subject | Metals | en_AU |
dc.subject | Infrared spectra | en_AU |
dc.subject | Light Sources | en_AU |
dc.title | Pentavalent manganese luminescence: designing narrow-band near-infrared light-emitting diodes as next-generation compact light sources | en_AU |
dc.type | Journal Article | en_AU |