Pentavalent manganese luminescence: designing narrow-band near-infrared light-emitting diodes as next-generation compact light sources

dc.contributor.authorRajendran, Ven_AU
dc.contributor.authorChen, KCen_AU
dc.contributor.authorHuang, WTen_AU
dc.contributor.authorMajewska, Nen_AU
dc.contributor.authorLeśniewski, Ten_AU
dc.contributor.authorGrzegorczyk, Men_AU
dc.contributor.authorMahlik, Sen_AU
dc.contributor.authorLeniec, Gen_AU
dc.contributor.authorKaczmarek, SMen_AU
dc.contributor.authorPang, WKen_AU
dc.contributor.authorPeterson, VKen_AU
dc.contributor.authorLu, KMen_AU
dc.contributor.authorChang, Hen_AU
dc.contributor.authorLiu, RSen_AU
dc.date.accessioned2025-04-08T04:56:22Zen_AU
dc.date.available2025-04-08T04:56:22Zen_AU
dc.date.issued2023-11-30en_AU
dc.date.statistics2024-09-11en_AU
dc.description.abstractManganese in the pentavalent state (Mn5+) is both rare and central in materials exhibiting narrow-band near-infrared (NIR) emission and is highly sought after for phosphor-converted light-emitting diodes as promising candidates for future miniature solid-state NIR light source. We develop the Ca14Zn6Ga10-xMnxO35 (x = 0.3, 0.5, 1.0, 1.25, 1.5, and 3.0) series that exhibit simultaneous Mn4+ (650-750 nm) and Mn5+ (1100-1250 nm) luminescence. We reveal a preferential occupancy of Mn in regular octahedral and tetrahedral environments, with the short bond length between these responsible for luminescence. We present a theoretical spin-orbital interaction model in which breaking the spin selection rule permits the luminescence of Mn4+ and Mn5+. A total photon flux of 87.5 mW under a 7 mA driving current demonstrates its potential for real-time application. This work pushes our understanding of achieving Mn5+ luminescence and opens the way for the design of Mn5+-based narrow-band NIR phosphors. © 2022 American Chemical Society.en_AU
dc.description.sponsorshipThis work was supported by the National Science and Technology Council in Taiwan (Contract Nos. NSTC 109-2113-M-002-020-MY3 and NSTC 110-2923-M-002-017-MY3), the National Science Center Poland Grant Opus (No. 2016/23/B/ST3/03911 and No. 2018/31/B/ST4/00924), and The National Centre for Research and Development Poland Grant (No. PL-TW/VIII/1/2021). Neutron powder diffraction data were obtained under the ANSTO neutron beamtime proposal MI13193.en_AU
dc.identifier.citationRajendran, V., Chen, K.-C., Huang, W.-T., Majewska, N., Leśniewski, T., Grzegorczyk, M., Mahlik, S., Leniec, G., Kaczmarek, S. M., Pang, W. K., Peterson, V. K., Lu, K.-M., Chang, H., & Liu, R.-S. (2023). Pentavalent manganese luminescence: designing narrow-band near-infrared light-emitting diodes as next-generation compact light sources. ACS Energy Letters, 8(1), 289-295. doi:10.1021/acsenergylett.2c02403en_AU
dc.identifier.issn2380-8195en_AU
dc.identifier.issue1en_AU
dc.identifier.journaltitleACS Energy Lettersen_AU
dc.identifier.pagination289-295en_AU
dc.identifier.urihttps://doi.org/10.1021/acsenergylett.2c02403en_AU
dc.identifier.urihttps://apo.ansto.gov.au/handle/10238/16135en_AU
dc.identifier.volume8en_AU
dc.languageEnglishen_AU
dc.language.isoenen_AU
dc.publisherAmerican Chemical Societyen_AU
dc.subjectLuminescenceen_AU
dc.subjectOrbitsen_AU
dc.subjectSpinen_AU
dc.subjectPhotonsen_AU
dc.subjectPhosphorsen_AU
dc.subjectGalliumen_AU
dc.subjectZincen_AU
dc.subjectCalciumen_AU
dc.subjectManganeseen_AU
dc.subjectSilicon diodesen_AU
dc.subjectMetalsen_AU
dc.subjectInfrared spectraen_AU
dc.subjectLight Sourcesen_AU
dc.titlePentavalent manganese luminescence: designing narrow-band near-infrared light-emitting diodes as next-generation compact light sourcesen_AU
dc.typeJournal Articleen_AU
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
nz2c02403_si_001.pdf
Size:
2.75 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.66 KB
Format:
Plain Text
Description:
Collections