Using neutron diffraction to explore lithium displacement within cubic phase stabilised Ga-doped Li6.75La3Zr1.75Ta0.25O12 lithium garnet oxides

dc.contributor.authorChristopher, TDen_AU
dc.contributor.authorZhang, Ten_AU
dc.contributor.authorHuang, Sen_AU
dc.contributor.authorZujovic, Zen_AU
dc.contributor.authorAvdeev, Men_AU
dc.contributor.authorCao, Pen_AU
dc.contributor.authorSöhnel, Ten_AU
dc.date.accessioned2024-02-23T04:36:31Zen_AU
dc.date.available2024-02-23T04:36:31Zen_AU
dc.date.issued2023-12-15en_AU
dc.date.statistics2024-02-24en_AU
dc.description.abstractTypical Li6.75La3Zr1.75Ta0.25O12 exists as a mixture of tetragonal and cubic arrangements, but adding small amounts of Ga3+ (Li6.75–3xGaxLa3Zr1.75Ta0.25O12 x ≥ 0.1) resulted in a single cubic (I a-3d) phase lithium garnet oxide. Following the stabilisation of the cubic phase, the effects on lithium distributions were explored with neutron powder diffraction concerning Ga3+ content and temperature. Increasing the amount of Ga3+ reduced the amount of lithium within the structure, directly decreasing the Li 96h site occupancy and showing a minimal effect on the Li 24d site occupancy. High-temperature neutron diffraction studies revealed the migration of lithium from the Li 24d site to the Li 96h with increasing temperature. The inclusion of Ga3+ improved the total ionic conductivity over the gallium-free system. However, with increasing gallium content (x > 0.1), a negative correlation between the garnet's gallium content and total lithium ionic conductivity is observed, showing how the total amount of free lithium ions impact the system's total ionic conductivity. Though the electrolytes explored here show some limitations, the lithium-ion displacement trends with doping and temperature give us further insight into how these lithium garnet systems respond to chemical and physical change. © 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY licence.en_AU
dc.description.sponsorshipFunding and support from the Australian Nuclear Science and Technology Organisation (ANSTO) for neutron powder diffraction on the ECHIDNA beamline (P7504). The UoA Shared Research Equipment Platform (ShaRe) for collecting powder X-ray diffraction data. T.C. acknowledges the University of Auckland Doctoral Scholarship.en_AU
dc.identifier.articlenumber172078en_AU
dc.identifier.citationChristopher, T. D., Zhang, T., Huang, S., Zujovic, Z., Avdeev, M., Cao, P., & Söhnel, T. (2023). Using neutron diffraction to explore lithium displacement within cubic phase stabilised Ga-doped Li6.75La3Zr1.75Ta0.25O12 lithium garnet oxides. Journal of Alloys and Compounds, 968, 172078. doi:10.1016/j.jallcom.2023.172078en_AU
dc.identifier.issn0925-8388en_AU
dc.identifier.journaltitleJournal of Alloys and Compoundsen_AU
dc.identifier.pagination172078en_AU
dc.identifier.urihttp://dx.doi.org/10.1016/j.jallcom.2023.172078en_AU
dc.identifier.urihttps://apo.ansto.gov.au/handle/10238/15427en_AU
dc.identifier.volume968en_AU
dc.languageEnglishen_AU
dc.language.isoenen_AU
dc.publisherElsevieren_AU
dc.subjectCeramicsen_AU
dc.subjectIonic conductivityen_AU
dc.subjectNeutron diffractionen_AU
dc.subjectX-ray diffractionen_AU
dc.subjectRare earthsen_AU
dc.subjectGalliumen_AU
dc.subjectElectrolytesen_AU
dc.titleUsing neutron diffraction to explore lithium displacement within cubic phase stabilised Ga-doped Li6.75La3Zr1.75Ta0.25O12 lithium garnet oxidesen_AU
dc.typeJournal Articleen_AU
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
1-s2.0-S0925838823033819-main.pdf
Size:
6.26 MB
Format:
Adobe Portable Document Format
Description:
Loading...
Thumbnail Image
Name:
1-s2.0-S0925838823033819-mmc1.docx
Size:
229.13 KB
Format:
Microsoft Word XML
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.66 KB
Format:
Plain Text
Description:
Collections