Variability in the Holocene marine radiocarbon reservoir effect for the Tropical West Pacific

Loading...
Thumbnail Image
Date
2021-11-17
Journal Title
Journal ISSN
Volume Title
Publisher
Australian Nuclear Science and Technology Organisation
Abstract
Reliable determination of the marine radiocarbon reservoir effect (e.g., marine radiocarbon reservoir correction (ΔR)) is important for the construction of robust radiocarbon chronologies for marine archives for various research areas including archaeology, palaeoecology, paleoceanography, Quaternary research and climate change studies. In this study, we examined temporal ΔR variability for the South China Sea (SCS) and the Great Barrier Reef (GBR) during the past ~8.1 ka based on ¹⁴ C analysis of ²³⁰ Th-dated corals. Coral samples, including Acropora sp., Cyphastrea sp., Favia sp. and Porites sp., were collected from Xisha (or Paracel) Islands and Yongshu Reef, Nansha (or Pratly) Islands in the SCS; Clerke Island, Gore Island, Haggerstone Island, Alexandra Reef and High Island in the northern GBR; and Great Keppel Island in the southern GBR. A total of 44 unaltered coral samples (based on SEM screening, δ²³⁴ U and initial ²³⁰ Th/²³²Th ratios) were analysed for ²³⁰ Th and ¹⁴ C. ²³⁰ Th dates were determined using a VG Sector-54 thermal ionization mass spectrometer (TIMS) or a Nu Plasma MC-ICP-MS in the Radiogenic Isotope Facility, The University of Queensland, with a precision better than 0.5% (2σ). Subsamples of these dated corals were then taken for radiocarbon analysis using the STAR AMS facility at ANSTO with a typical precision of ~0.3-0.4% (1σ). Results show large ΔR variations of ~410 yr and ~490 yr for the SCS and the northern GBR at ~5.5-8.1 ka and ~5.5-7 ka, respectively, and a smaller ΔR variability of ~200 yr for the SCS at ~2-3.5 ka. Changes in the sources (or ¹⁴ C level) of upwelled waters in the Tropical East Pacific, and variations in Pacific-wide and regional/local ocean circulation associated with climate change might be responsible for these observed ΔR variations [1]. The results of our study also indicate the need for regional marine radiocarbon calibration curves for improved radiocarbon dating of marine samples as the observed Holocene ΔR values for the Tropical Pacific are not fully reproduced by recent modelling work using a 3D ocean model [2], which takes into account climate change effects. Ocean circulation changes were included in the model for the period 11.5-50 ka but possibly not considered or not well represented for the Holocene, which might explain the differences between the observed and modelled ΔR values. © The Authors
Description
Keywords
Quaternary period, Carbon 14, Aquatic ecosystems, Archaeology, Historical aspects, Ecology, Oceanography, Climatic change, China Sea, Seas
Citation
Hua, Q., Ulm, S., Yu, K., Clark, T. R., Nothdurft, L., Leonard, N., Pandolfi, J., Jacobsen, G., & Zhao, J.-X. (2021). Variability in the Holocene marine radiocarbon reservoir effect for the Tropical West Pacific. Paper presented to the 15th International Conference on Accelerator Mass Spectrometry. ANSTO Sydney, Australia. November 15th – 19th, 2021, (pp. 62). Retrieved from: https://ams15sydney.com/wp-content/uploads/2021/11/AMS-15-Full-Program-and-Abstract-Book-R-1.pdf