Browsing by Author "Zhao, JX"
Now showing 1 - 20 of 33
Results Per Page
Sort Options
- ItemArginine catabolism is essential to polymyxin dependence in Acinetobacter baumannii(Elsevier, 2024-07) Han, ML; Alsaadi, Y; Zhao, JX; Zhu, Y; Lu, J; Jiang, X; Ma, W; Patil, NA; Dunstan, RA; Le Brun, AP; Wickremasinghe, H; Hu, X; Wu, Y; Yu, HH; Wang, J; Barlow, CK; Bergen, PJ; Shen, HH; Lithgow, T; Creek, DJ; Velkov, T; Li, JPolymyxins are often the only effective antibiotics against the "Critical" pathogen Acinetobacter baumannii. Worryingly, highly polymyxin-resistant A. baumannii displaying dependence on polymyxins has emerged in the clinic, leading to diagnosis and treatment failures. Here, we report that arginine metabolism is essential for polymyxin-dependent A. baumannii. Specifically, the arginine degradation pathway was significantly altered in polymyxin-dependent strains compared to wild-type strains, with critical metabolites (e.g., L-arginine and L-glutamate) severely depleted and expression of the astABCDE operon significantly increased. Supplementation of arginine increased bacterial metabolic activity and suppressed polymyxin dependence. Deletion of astA, the first gene in the arginine degradation pathway, decreased phosphatidylglycerol and increased phosphatidylethanolamine levels in the outer membrane, thereby reducing the interaction with polymyxins. This study elucidates the molecular mechanism by which arginine metabolism impacts polymyxin dependence in A. baumannii, underscoring its critical role in improving diagnosis and treatment of life-threatening infections caused by "undetectable" polymyxin-dependent A. baumannii. ª 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC licence
- ItemAssessment of climatic influences on 14C activity in a Holocene stalagmite from Flores, Indonesia(University of Newcastle, 2010-06-30) Griffiths, ML; Drysdale, RN; Hua, Q; Hellstrom, JC; Frisia, S; Gagan, MK; Zhao, JX; Ayliffe, LKIn the last decade, a number of speleothem studies have used radiocarbon dating to address a range of paleoclimate problems. These have included the use of the bomb pulse to anchor chronologies over the last 60 years (Mattey et al 2008), the combining of U-series and radiocarbon measurements to improve the radiocarbon calibration curve (Beck et al. 2001), and linking atmospheric radiocarbon variations with climate changes (McDermott et al. 2008). Central to a number of these studies is how to constrain, or interpret variations in, the amount of radioactively dead carbon (i.e. the dead carbon fraction, or DCF) that contributes to a speleothem radiocarbon measurement. In this study, we use radiocarbon measurements, stable isotope and trace element geochemistry, and U-series ages to examine DCH variations between 2.4 and 2.8 ka in a previously studied (Griffiths et al. 2009; 2010) speleothem from Liang Luar, Flores, Indonesia.
- ItemC-14 marine reservoir ages in Hawaii derived from U-series dated corals(Society for American Archaeology, 2008-03) Weisler, MI; Hua, Q; Zhao, JX
- ItemCoupled U-series and radiocarbon dating of a Chinese stalagmite from 15 to 33 ka: testing calibration applicability and dead carbon correction variability(Elsevier, 2006-08) Hodge, E; Zhao, JX; Feng, YX; Wu, J; Fink, D; Hua, QA high purity stalagmite from South China with minimal detrital component (based on 230Th/232Th ratios >4000) and an average growth rate of ∼50 mm/ka has been carefully sampled along its growth axis for both U-series and radiocarbon measurements in a study to investigate its applicability for improving the database of radiocarbon calibration for the pre-dendro period (∼12.4 ka). Our preliminary assessment is based on a set of 15 high-precision AMS 14C-and 6 TIMS U-series samples spaced over the 37 cm length of the stalagmite to confirm an age range of 15 to 33 ka. TIMS U-series dates over this age range can be obtained to 0.5% at 2σ errors and as speleothems are composed of dense crystalline calcite, they are often less vulnerable to post-depositional alteration than corals. However an issue of serious concern in such an analysis is to evaluate whether the variability of the dead carbon fraction (DCF) over this time range reduces the reliability and quality of a speleothem-based calibration of atmospheric radiocarbon. The DCF represents the fraction of carbon derived from host limestone surrounding the cave that contains negligible 14C and therefore offsets the 14C date towards older ages. An assumption of a constant DCF, estimated by others to be ∼16% for speleothems (based on matching to a well-constrained radiocarbon calibration curve from 11 to 15 ka) requires case-by-case verification. Calendar ages for the positions taken for AMS 14C samples were interpolated from adjacent U-series dates on the growth curve. These absolute ages were compared to the measured AMS 14C ages and then overlain on the IntCal04 calibration curve. In broad terms, our preliminary results indicate that the growth rate, although continuous, was not linear over the period from 15 to 33 ka. In order to minimise the difference between our 14C-ages and the IntCal04 curve from 26 ka to 15.6 ka, we required an average DCF of 18%. However, this value causes the younger half (<22 ka) to be ‘too old’ and the upper section (>22 ka) to be too ‘young’ indicating that DCF over the LGM period was probably not constant. To further qualify the status of this stalagmite and decouple growth rate variability from that of the DC, a new set of 30 paired 230Th–AMS 14C-ages are in progress. Copyright © 2006 Elsevier Ltd.
- ItemEvidence for Holocene changes in Australian-Indonesian monsoon rainfall from stalagmite trace element and stable isotope ratios(Elsevier, 2010-03-15) Griffiths, ML; Drysdale, RN; Gagan, MK; Frisia, S; Zhao, JX; Ayliffe, LK; Hantoro, WS; Hellstrom, JC; Fischer, MJ; Feng, YX; Suwargadi, BWTrace element and stable isotope ratios from an active stalagmite (LR06-B1) recovered from Liang Luar Cave on the island of Flores (eastern Indonesia) are used to reconstruct the position of the austral summer inter-tropical convergence zone and Australian-Indonesian summer monsoon variability during the Holocene. Uranium-series dating of the stalagmite shows that it commenced growth 12,640 years ago , with hiatuses spanning 8,560 to 6,420 and 3,670 to 2,780 years ago. Stalagmite Mg/Ca and Sr/Ca ratios correlate significantly with one another, and with δ18O and δ13C, throughout the record. This suggests that the Mg/Ca and Sr/Ca ratios are dominated by prior calcite precipitation, a process whereby degassing in the vadose zone during periods of low recharge causes deposition of calcite and disproportionate loss of Ca2+ ions (relative to Mg2+ and Sr2+) ‘upstream’ of the stalagmite. The degree of initial 234U/238U disequilibrium also appears to have been controlled by recharge to the overlying aquifer. Together with the Mg/Ca, Sr/Ca, and δ18O values, the initial uranium isotope activity ratios ([234U/238U]I) imply a generally drier early Holocene, coincident with a lower sea level and lower Southern Hemisphere summer insolation. Comparison of speleothem δ18O time-series from Flores and Borneo shows that they vary in unison for much of the Holocene. However, there is a significant decrease in the Borneo δ18O record ~6,000 to 4,000 years ago that does not occur in the Flores record. This anomaly may be related to a change in the Australian-Indonesian summer monsoon circulation in response to a protracted positive phase of the Indian Ocean Dipole. Under this scenario, stronger upwelling off of western Indonesia would, based on present-day effects, result in reduced summer convective activity over Flores and a subsequent northward shift of the intertropical convergence zone. © 2010, Elsevier Ltd.
- ItemHigh-resolution stalagmite reconstructions for Australian-Indonesian monsson rainfall variability during Heinrich stadial 3 and Greenland interstadial 4(Elsevier, 2011-02-15) Lewis, S; Gagan, MK; Ayliffe, LK; Zhao, JX; Hantoro, WS; Treble, PC; Hellstrom, JC; LeGrande, AN; Kelley, M; Schmidt, GA; Suwargadi, BWLittle is known about the possible teleconnections between abrupt climatic changes originating in the North Atlantic and precipitation dynamics in the Australian-Indonesian summer monsoon (AISM) domain. We examine the climatic impacts of Heinrich stadial 3 (HS3) and Greenland interstadials 4 and 3 (GIS4/3) on AISM-associated precipitation through a high-resolution analysis of stable isotope (delta(18)O, delta(13)C) and trace element (Mg/Ca, P/Ca) ratios in a stalagmite from Liang Luar cave, Flores, Indonesia. Sixteen high precision (230)Th dates indicate that stalagmite LR07-E1 grew rapidly (similar to 0.3-1.0 mm/yr) in two phases between similar to 31.5-30.1 ka and similar to 27.8-25.6 ka, separated by a similar to 2.3 kyr unconformity. Temporally consistent abrupt responses occur in the Flores record during HS3 and GIS4, which are coherent with changes in stalagmite delta(18)O records from China and Brazil. The response of low-latitude precipitation to HS3 cooling and GIS4 warming, as demonstrated by the widely separated sites, comprises three distinct simplified phases: (1) a strong southward migration of the ITCZ during HS3 is associated with a decrease in rainfall at Liang Luar cave and in China, while wetter conditions are reconstructed from Brazil, (2) represents the peak of HS3 impacts and an extended hiatus begins in the Flores record and (3) where suggested dry conditions at Liang Luar throughout GIS4 form part of a coherent north-south anti-phasing in precipitation changes. The reconstructed changes are also broadly consistent with NASA GISS ModelE-R simulations of a Heinrich-like freshwater perturbation in the North Atlantic basin, which produces a southward shift in the ITCZ. The relationship between the palaeoclimate records indicates that atmospheric teleconnections rapidly propagate and synchronise climate change across the hemispheres during periods of abrupt climate change. Our findings augment recent proposals that large-scale atmospheric re-organisations during stadials and interstadials play a key role in driving changes in atmospheric CO(2) concentration, air temperature and global climate change. (C) 2011 Elsevier B.V.
- ItemHolocene marine 14C reservoir age variability: evidence from 230Th-dated corals in the South China Sea(American Geophysical Union, 2010-09) Yu, K; Hua, Q; Zhao, JX; Hodge, E; Fink, D; Barbetti, MThe South China Sea (SCS) is well connected with the western Pacific and influenced by the East Asian monsoon. We have examined temporal variations in radiocarbon marine reservoir ages (R) and regional marine reservoir corrections (ΔR) of the SCS during the Holocene using paired measurements of AMS 14C and TIMS 230Th on 20 pristine corals. The results show large fluctuations in both R and ΔR values over the past 7500 years (yrs) with two distinct plateaus during 7.5–5.6 and 3.5–2.5 thousand calendar years before present (cal ka BP). The respective weighted mean ΔR values of these plateaus are 151 ± 85 and 89 ± 59 yrs, which are significantly higher than its modern value of −23 ± 52 yrs. This suggests that using a constant modern ΔR value to calibrate 14C dates of the SCS marine samples will introduce additional errors to the calibrated ages. Our results provide the first database for the Holocene R and ΔR values of the SCS for improved radiocarbon calibration of marine samples. We interpret the two ΔR plateaus as being related to two intervals with weakened El Niño - Southern Oscillation (ENSO) and intensified East Asian summer monsoon (EASM). This is because the 14C content of the SCS surface water is controlled by both the 14C concentration of the Pacific North Equatorial Current (NEC) which is in turn influenced by ENSO-induced upwelling along the Pacific equator and vertical upwelling within the SCS as a result of moisture transportation to midlatitude region to supply the EASM rainfall. © 2010 American Geophysical Union.
- ItemHuman impact on the environment in Western Flores, Indonesia during the late Holocene: identifying agricultural transitions(18th INQUA Congress, 2011-07-21) St Pierre, E; Zhao, JX; Aplin, K; Drysdale, RN; Golding, SD; Griffiths, ML; Hua, QLimestone caves can act as excellent repositories of palaeoenvironmental information and past human activities. This paper presents a multi-proxy record of late Holocene palaeoclimate and palaeoenvironmental change derived from environmental archives in Liang Luar (Steam Cave), western Flores, Indonesia. Liang Luar, located ~1 km from Liang Bua (the discovery site of the hominid species Homo floresiensis), is a ~1.6km long passage with several large chambers and numerous speleothems (stalagmites and stalactites). A palaeoclimate record was compiled using stable carbon and oxygen isotope ratios from a stalagmite precisely dated to 0-1800 yr BP using U/Th dating. The stalagmite isotope record preserves an episode of rapid vegetation change c. 800 yr BP marked by a large shift in carbon and decoupling of the carbon from the oxygen isotopes, and thus thought to be unrelated to climate. Excavated owl pellet deposits in the entrance of Liang Luar dated by 14C AMS on charcoal, reveal continuous sediment deposition from at least 2400 yr BP to the present. The 14C chronology demonstrates a sudden increase in depositional rates at the cave entrance as well as an increase in the abundance of charcoal fragments, at the time of the vegetation change inferred from the stalagmite record. Faunal remains indicate the commensal species Rattus exulans, arrives early in the sequence, while Rattus rattus appears much later. A surprisingly late appearance of two rodents associated with irrigated rice fields, together with a surge in frog remains, indicates wet rice farming was only recently introduced to the area. These paleoenvironmental records act as a basis from which to understand the timing and intensity of human impacts on late Holocene environments in western Flores, and the relationship of this incursion to changing land use patterns. Copyright (c) 2011 INQUA 18
- ItemHydrological control on the dead-carbon content of a tropical Holocene speleothem(Elsevier, 2012-12-01) Griffiths, ML; Fohlmeister, J; Drysdale, RN; Hua, Q; Johnson, KR; Hellstrom, JC; Gagan, MK; Zhao, JXOver the past decade, a number of speleothem studies have used radiocarbon (14C) to address a range of palaeoclimate problems. These have included the use of the bomb pulse 14C to anchor chronologies over the last 60 years, the combination of U-Th and 14C measurements to improve the radiocarbon age-calibration curve, and linking atmospheric 14C variations with climate change. An issue with a number of these studies is how to constrain, or interpret, variations in the amount of radioactively dead carbon (i.e. the dead carbon fraction, or DCF) that reduces radiocarbon concentrations in speleothems. In this study, we use 14C, stable-isotopes, and trace-elements in a U-Th dated speleothem from Flores, Indonesia, to examine DCF variations and their relationship with above-cave climate over the late Holocene and modern era. A strong association between the DCF and hydrologically-controlled proxy data suggests that more dead carbon was being delivered to the speleothem during periods of higher cave recharge (i.e. lower δ18O, δ13C and Mg/Ca values), and hence stronger summer monsoon. To explore this relationship, we used a geochemical soil-karst model coupled with 14C measurements through the bomb pulse to disentangle the dominant components governing DCF variability in the speleothem. We find that the DCF is primarily controlled by limestone dissolution associated with changes in open- versus closed-system conditions, rather than kinetic fractionation and/or variations in the age spectrum of soil organic matter above the cave. Therefore, we infer that periods of higher rainfall resulted in a higher DCF because the system was in a more closed state, which inhibited carbon isotope exchange between the karst water dissolved inorganic carbon and soil-gas CO2, and ultimately led to a greater contribution of dead carbon from the bedrock. © 2020 Elsevier B.V.
- ItemHydrological influence on the dead carbon fraction in a tropical speleothem during the Younger Dryas and the Last Millennium(American Geophyical Union, 2015-11-16) Griffiths, ML; Hua, Q; Drysdale, RN; Bajo, P; Jenkins, D; Hellstrom, JC; Johnson, KR; Gagan, MK; Zhao, JXThe number of paleoclimate records derived from speleothems has increased significantly in recent years. In addition, speleothems have been used for calibration of the radiocarbon timescale beyond the range of the tree-ring record. One critical issue for reliable speleothem-based radiocarbon calibration and 14C dating of speleothems is constraining the temporal variations in the radioactively dead carbon (i.e. dead carbon fraction (DCF)) that is incorporated into this archive and to determine the potential mechanisms driving such changes. While some studies have shown insignificant variations in DCF through time and highlighted the potential utility of speleothems to extend/improve the radiocarbon calibration curve, others have reported significant temporal variability in speleothem DCF associated with changes in cave recharge. To further assess the potential hydrological control on speleothem radiocarbon variability, we constructed a new high-resolution DCF record from a speleothem from Flores, Indonesia for two different time periods, the Younger Dryas (YD) chronozone and the Last Millennium. A total of thirty-four 14C analyses (twenty for the YD and fourteen for the Last Millennium) were conducted on pieces of calcite extracted from stalagmite LR06-B1, which was well-dated by ~90 U-Th ages. To better characterize the paleoclimate and environmental changes, high-resolution stable-isotope (δ18O, δ13C) and trace-element (Mg/Ca, Sr/Ca) measurements were also conducted along the same sections of stalagmite. Broad comparison of the DCF record with the hydrologically-controlled proxy data suggests that increases in rainfall were matched by DCF increases. In line with a previous interpretation of DCF variability for the same specimen, but during the time interval 2.4-2.8 cal kyr BP and the post-bomb period, we interpret the DCF during the YD and the Last Millennium to have been primarily controlled by limestone dissolution associated with changes in open- versus closed-system conditions, rather than other potential factors such as kinetic fractionation and/or variations in the age-spectrum of soil organic matter above the cave. American Geophysical Union, Fall Meeting 2015
- ItemIncreasing Australian-Indonesian monsoon rainfall linked to early Holocene sea-level rise.(Nature Publishing Group, 2009-09) Griffiths, ML; Drysdale, RN; Gagan, MK; Zhao, JX; Ayliffe, LK; Hellstrom, JC; Hantoro, WS; Frisia, S; Feng, YX; Cartwright, I; Pierre, ES; Fischer, MJ; Suwargadi, BWThe Australian-Indonesian summer monsoon affects rainfall variability and hence terrestrial productivity in the densely populated tropical Indo-Pacific region. It has been proposed that the main control of summer monsoon precipitation on millennial timescales is local insolation(1-3), but unravelling the mechanisms that have influenced monsoon variability and teleconnections has proven difficult, owing to the lack of high-resolution records of past monsoon behaviour. Here we present a precisely dated reconstruction of monsoon rainfall over the past 12,000 years, based on oxygen isotope measurements from two stalagmites collected in southeast Indonesia. We show that the summer monsoon precipitation increased during the Younger Dryas cooling event, when Atlantic meridional overturning circulation was relatively weak(4). Monsoon precipitation intensified even more rapidly from 11,000 to 7,000 years ago, when the Indonesian continental shelf was flooded by global sea-level rise(5-7). We suggest that the intensification during the Younger Dryas cooling was caused by enhanced winter monsoon outflow from Asia and a related southward migration of the intertropical convergence zone(8). However, the early Holocene intensification of monsoon precipitation was driven by sea-level rise, which increased the supply of moisture to the Indonesian archipelago. © 2009, Nature Publishing Group.
- ItemIndo-Pacific hydroclimate over the past millennium and links with global climate variability(American Geophysical Union, 2016-01-01) Griffiths, ML; Drysdale, RN; Kimbrough, AK; Hua, Q; Johnson, KR; Gagan, MK; Cole, JE; Cook, BI; Zhao, JX; Hellstrom, JC; Hantoro, WSThe El Niño-Southern Oscillation (ENSO) and Interdecadal Pacific Oscillation (IPO) are the dominant modes of hydroclimate variability in the tropical Pacific and have far-reaching impacts on Earth’s climate. Experiments combining instrumental records with climate-model simulations have highlighted the dominant role of the Pacific Walker circulation in shaping recent trends in global temperatures (Kosaka and Xie, 2013, 2016). However, the paucity of high-resolution terrestrial paleoclimate records of deep atmospheric convection over the Indo-Pacific Warm Pool (IPWP) precludes a comprehensive assessment as to role of the tropical Pacific in modulating radiative-forced shifts in global temperature on multidecadal to centennial timescales. Here we present a suite of new high-resolution oxygen-isotope records from Indo-Pacific speleothems, which, based on modern rainfall and cave drip-water monitoring studies, along with trace element (Mg/Ca, Sr/Ca) analyses, are interpreted to reflect changes in Australasian monsoon variability during the Common Era (C.E.). Our results reveal a protracted decline in southern Indonesian monsoon rainfall between ~1000-1400 C.E. but stronger between ~1500-1900 C.E. These centennial-scale patterns over southern Indonesia are consistent with other proxy records from the region but anti-phased with records from India and China, supporting the paradigm that Northern Hemisphere cooling increased the interhemispheric thermal gradient, displacing the Australasian ITCZ southward. However, our findings are also compatible with a recent synthesis of paleohydrologic records for the Australasian monsoon region, which, collectively, suggest that rather than moving southward during the LIA, the latitudinal range of monsoon-ITCZ migration probably contracted equatorward (Yan et al., 2015). This proposed LIA ITCZ contraction likely occurred in parallel with a strengthening of the Walker circulation (as indicated through comparison with our hydroclimate records from the central-eastern equatorial Pacific Ocean and western Indian Ocean, and eastern Australia), and thus, the tropical Pacific may have played a critical role in amplifying the radiative-forced global cooling already underway. © 2016. American Geophysical Union
- ItemIntegration of ice-core, marine and terrestrial records for the Australian Last Glacial Maximum and Termination: a contribution from the OZ INTIMATE group(Wiley, 2006-10) Turney, CSM; Haberle, SG; Fink, D; Kershaw, AP; Barbetti, M; Barrows, TT; Black, M; Cohen, TJ; Corrège, T; Hesse, PP; Hua, Q; Johnston, R; Morgan, VI; Moss, PT; Nanson, GC; van Ommen, TD; Rule, S; Williams, NJ; Zhao, JX; D'Costa, D; Feng, YX; Gagan, MK; Mooney, SD; Xia, QThe degree to which Southern Hemisphere climatic changes during the end of the last glacial period and early Holocene (30-8 ka) were influenced or initiated by events occurring in the high latitudes of the Northern Hemisphere is a complex issue. There is conflicting evidence for the degree of hemispheric ‘teleconnection’ and an unresolved debate as to the principle forcing mechanism(s). The available hypotheses are difficult to test robustly, however, because the few detailed palaeoclimatic records in the Southern Hemisphere are widely dispersed and lack duplication. Here we present climatic and environmental reconstructions from across Australia, a key region of the Southern Hemisphere because of the range of environments it covers and the potentially important role regional atmospheric and oceanic controls play in global climate change. We identify a general scheme of events for the end of the last glacial period and early Holocene but a detailed reconstruction proved problematic. Significant progress in climate quantification and geochronological control is now urgently required to robustly investigate change through this period. © 2006 John Wiley & Sons, Ltd.
- ItemAn investigation of the climatic influences on 14C activity in a Holocene stalagmite from Flores, Indonesia(18th INQUA Congress, 2011-07-21) Griffiths, ML; Drysdale, RN; Hua, Q; Hellstrom, JC; Frisia, S; Gagan, MK; Zhao, JX; Fischer, MJ; Ayliffe, LKOver the past decade, a number of speleothem studies have used radiocarbon dating to address a range of palaeoclimate problems. These have included the use of the bomb pulse to anchor chronologies over the last 60 years, the combining of U-series and radiocarbon measurements to improve the radiocarbon calibration curve, and linking atmospheric radiocarbon variations with climate changes. Central to a number of these studies is how to constrain, or interpret variations in, the amount of radioactively dead carbon (i.e. the dead carbon fraction, or DCF) that contributes to a speleothem radiocarbon measurement. In this study, we use radiocarbon measurements, stable-isotope and trace-element geochemistry, and U-series ages from a previously studied speleothem from Flores, Indonesia, to examine DCF variations and its relationship with above-cave climate over the late-Holocene to modern interval. A strong association between the DCF and other hydrologically controlled proxy data clearly shows that more dead carbon is being delivered to the speleothem during periods of higher cave recharge (i.e. lower ?18O, ?13C and Mg/Ca values) and hence a stronger summer monsoon. One possible explanation is a higher contribution from the bedrock under such conditions. Although one might expect a concurrent increase in stable carbon isotope values as DCF increases (not observed here), it is possible that such an increase in ?13C may be more than offset by the effect of increased recharge on the rate of carbon dioxide degassing. But, a higher proportion of bedrock carbon is not the only possible explanation: when the monsoon is stronger, a greater proportion of less mobile ‘older carbon’ may be leached from the soil thus diluting the ‘younger carbon’ fraction. This would produce an ‘apparent’ increase in DCF. Copyright (c) 2011 INQUA 18
- ItemLarge variations in the Holocene marine radiocarbon reservoir effect reflect ocean circulation and climatic changes(Elsevier, 2015-04-21) Hua, Q; Webb, GE; Zhao, JX; Nothdurft, LD; Lybolt, M; Price, GJ; Opdyke, BNAccurate radiocarbon dating of marine samples requires knowledge of the marine radiocarbon reservoir effect. This effect for a particular site/region is generally assumed constant through time when calibrating marine 14C ages. However, recent studies have shown large temporal variations of several hundred to a couple of thousand years in this effect for a number of regions during the late Quaternary and Holocene. Here we report marine radiocarbon reservoir correction Δ(R) for Heron Reef and Moreton Bay in southwestern (SW) Pacific for the last 8 ka derived from 14C analysis of 230Th-dated corals. Most of our ΔR for the last ∼5.4 ka agree well with their modern value, but large ΔR variability of ∼410 yr (from trough to peak) with possible decadal/centennial fluctuations is evident for the period ∼5.4–8 ka. The latter time interval also has significant variations with similar features in previously published Δ values for other sites in the Pacific, including southern Peru–northern Chile in southeastern (SE) Pacific, the South China Sea, Vanuatu and Papua New Guinea, with the largest magnitude of ∼920 yr from SE Pacific. The mechanisms for these large ΔR variations across the Pacific during the mid-Holocene are complex processes involving (1) changes in the quantity and 14C content of upwelled waters in tropical east Pacific (TEP) (frequency and intensity of ocean upwelling in the TEP, and contribution of Subantarctic Mode Water to the upwelled waters, which is influenced by the intensity and position of southern westerly winds), and (2) variations in ocean circulation associated with climate change (La Niña/El Niño conditions, intensity of easterly trade winds, positions of the Intertropical Convergence Zone and the South Pacific Convergence Zone), which control the spreading of the older upwelled surface waters in the TEP to the western sites. Our results imply the need for employing temporal changes in ΔR values, instead of constant (modern) values, for age calibration of Holocene marine samples not only for the SW Pacific sites but also for other tropical and subtropical sites in the Pacific. Crown Copyright ©2015
- ItemLate holocene 14C marine reservoir corrections for Hawai'I derived from U-series dated archaeological coral(University of Arizona, 2009-06-01) Weisler, MI; Hua, Q; Zhao, JXThe first application of U-series dating and accelerator mass spectrometry (AMS) assay of Polynesian archaeological Pocillopora spp. branch corals for deriving a precise local marine reservoir correction (ΔR) is described. Known-age corals were selected that spanned the entire culture-historical sequence for the Hawaiian Islands, thus eliminating the problem of not having known-age dated samples that cover the period of direct relevance to prehistorians; in this case, about AD 700–1800. Dating coral samples from windward and leeward coastlines of Moloka‘i Island, with different offshore conditions such as upwelling, currents, wind patterns, coastal topography, and straight or embayed shorelines, provides insights into possible variations of local conditions on the same island—something that has never been attempted. In this regard, there was no spatial variability in ΔR during the 17th century. We report a weighted average ΔR value for Moloka‘i Island of 52 ± 25 yr using 12 pair-dated dedicatory branch corals from religious archaeological sites and demonstrate that there is no significant temporal variability in ΔR between about AD 700 to 1800. In combination with 4 selected previously published ΔR values based on pre-bomb known-age marine shells, a revised ΔR of 66 ± 54 yr is established for the Hawaiian Islands. However, future research should examine the archipelago-wide spatial variability in ΔR with the analysis of additional dated archaeological coral samples. © 2009 by the Arizona Board of Regents on behalf of the University of Arizona
- ItemLife and death of Holocene reefs of Moreton Bay, Queensland, Australia(Australian Geosciences Council, 2012-08-05) Nothdurft, LD; Major, J; Leondard, ND; Zhao, JX; Price, GJ; Welsh, KJ; Webb, GE; Hua, QDead fringing coral reefs of Moreton Bay are the southernmost fringing reefs in eastern Australia and are significant examples of marginal environments for subtropical reef growth. Two sites were investigated in the western part of the bay at Wellington Point and Cleveland Point. Seven auger cores and 5 surface transects were made across the dead reef flats to record spatial data on coral distribution and elevation and to provide samples for dating to test the timing and potential causes of reef termination. A total of 78 coral samples were dated using 230Th/U and 14C techniques. 230Th dates were determined by TIMS U-series, and MC-ICP-MS and 14C dates by AMS. Dates of framework corals indicate that reef growth initiated at different elevations by ∼7000 ybp and was predominantly vertical with little or no lateral progradation. Reef growth was continuous until termination at ∼5800 ybp. Micro-atolls (6523, 6680 ybp) suggest a sea level of ∼+1.3m above current lowest astronomical tides and elevated sea level persisted through that interval. Small incipient coral colonies on the dead reef surface range in ages between ∼4850 and 4700 ybp suggesting conditions were again suitable at that time for a recolonisation of the reef flat, but reef growth was not reinitiated. No younger ages were recorded. Temporal changes in Moreton Bay conditions have resulted in periodic phase shifts between favourable and unfavourable conditions for reef growth, coincident with a small sea level fall ∼5800 ybp and including potentially cooler temperatures and decreased water quality within the bay.
- ItemMarine radiocarbon reservoir effect along the north-eastern coast of Australia during the Holocene(Accelerator Mass Spectrometry, 2013-10-15) Hua, Q; Webb, GE; Zhao, JX; Nothdurft, LD; Price, GJRadiocarbon dating of surface ocean samples involves estimates of marine radiocarbon reservoir effect (e.g., marine reservoir age (R) and correction (ΔR)). These values for a given location are generally assumed to be constant with time when calibrating marine 14C ages. However, recent studies have reported large variability in the marine radiocarbon reservoir effect of several hundred to a couple of thousand years for various regions in the Pacific, Atlantic and Mediterranean during the Late-glacial and Holocene (Siani et al., 2001; Bondevik et al., 2006; Burr et al., 2009; Hua et al., 2009; Yu et al., 2010; Ortlieb et al., 2011; Sarnthein et al., 2011). These variations result from changes in ocean circulation and the carbon cycle associated with climate change. In this paper we present an investigation of possible variability in the marine radiocarbon reservoir effect along the north-eastern coast of Australia in South-Western (SW) Pacific during the last 8000 years. This study aims to get a better understanding of ocean circulation changes associated with climate change for the study area during the Holocene and to improve radiocarbon dating of marine samples.
- ItemA marine reservoir correction for the Houtman-Abrolhos Archipelago, East Indian Ocean, Western Australia(University of Arozina Department of Geosciences, 2013-01-01) Squire, P; Joannes-Boyau, R; Scheffers, AM; Nothdurft, LD; Hua, Q; Collins, LB; Scheffers, SR; Zhao, JXHigh-precision analysis using accelerator mass spectrometry (AMS) was performed upon known-age Holocene and modern, pre-bomb coral samples to generate a marine reservoir age correction value (Delta R) for the Houtman-Abrolhos Archipelago (28.7 degrees S, 113.8 degrees E) off the Western Australian coast. The mean Delta R value calculated for the Abrolhos Islands, 54 +/- 30 yr (1 sigma) agrees well with regional Delta R values for Leeuwin Current source waters (N-NW Australia-Java) of 60 +/- 38 yr. The Abrolhos Islands show little variation with Delta R values of the northwestern and north Australian coast, underlining the dominance of the more equilibrated western Pacific-derived waters of the Leeuwin Current over local upwelling. The Abrolhos Islands Delta R values have remained stable over the last 2884 cal yr BP, being also attributed to the Leeuwin Current and the El Nino Southern Oscillation (ENSO) signal during this period. Expected future trends will be a strengthening of the teleconnection of the Abrolhos Islands to the climatic patterns of the equatorial Pacific via enhanced ENSO and global warming activity strengthening the Leeuwin Current. The possible effect upon the trend of future Delta R values may be to maintain similar values and an increase in stability. However, warming trends of global climate change may cause increasing dissimilarity of Delta R values due to the effects of increasing heat stress upon lower-latitude coral communities. © 2013, University of Arizona.
- ItemMid-Holocene age obtained for nested diamond pattern petroglyph in the Billasurgam Cave complex, Kurnool District, southern India.(Academic Press Ltd - Elsevier Science Ltd., 2013-04-01) Taçon, PSC; Boivin, N; Petraglia, M; Blinkhorn, J; Chivas, A; Roberts, RG; Fink, D; Higham, T; Ditchfield, P; Korisettar, R; Zhao, JXIndia has one of the world's largest and most significant bodies of rock paintings and engravings, yet not a single rock art site or image has been directly and accurately dated using radiometric techniques. Here we report on results from the Billasurgam Cave complex near Kurnool in southern India. Although this cave complex has been investigated archaeologically since the late 1800s, it was not until 2008 that a large petroglyph, consisting of the remains of three nested diamond designs on a stalactite, was noted. In order to determine if this petroglyph had been made recently, flowstone was sampled from on top of and below the engraving. Radiocarbon dating revealed a mid-Holocene age of about 5000 cal BP for the petroglyph, but we cannot rule out the possibility that the engraving is several centuries younger. Similar nested diamond designs at some rock painting sites and on a chest core elsewhere in India have been assumed to be Mesolithic. Our result is consistent with this hypothesis, although we note that it also consistent with the creation of the petroglyph in the early Neolithic. We conclude that the Billasurgam engraved diamond design was probably made by Mesolithic foragers of the Kurnool region and is the oldest surviving form of rock art yet directly dated in southern India. © 2013 Elsevier Ltd.