Atomic layer deposition of SIO2 on porous alumina membranes: controlling the pore size and transport properties

No Thumbnail Available
Date
2008-12-30
Journal Title
Journal ISSN
Volume Title
Publisher
SPIE
Abstract
Atomic layer deposition (ALD) of SiO2 onto nanoporous alumina (PA) membranes was investigated with the aim of adjusting the pore size and transport properties. PA membranes from commercial sources with a range of pore diameters (20 nm, 100 nm and 200 nm) were used and modified by atomic layer deposition using tris(tert-butoxy)silanol and water as the precursor couple. By adjusting the number of deposition cycles, the thickness of the conformal silica coating was controlled, reducing the effective pore diameter, and subsequently changing the transport properties of the PA membrane. Silica coated PA membranes with desired pore diameters from <5 nm to 100 nm were fabricated. In addition to the pore size, the transport properties and selectivity of fabricated silica coated PA membranes were controlled by chemical functionalisation using a silane with hydrophobic properties. Structural and chemical properties of modified membranes were studied by dynamic secondary ion mass spectrometry (DSIMS) and scanning electron microscopy (SEM). Spectrophotometric methods were used to evaluate the transport properties and selectivity of silica coated membranes by permeation studies of hydrophobic and hydrophilic organic molecules. The resultant silica/PA membranes with specific surface chemistry and controlled pore size are applicable for molecular separation, cell culture, bioreactors, biosensing and drug delivery. © 2008 Society of Photo-Optical Instrumentation Engineers (SPIE)
Description
Keywords
Scanning electron microscopy, Mass spectroscopy, Silica, Porous materials, Molecules, Membranes, Deposition
Citation
Velleman, L., Triani, G., Evans, P. J., Atanacio, A., Shapter, J. G., & Losic, D. (2008). Atomic layer deposition of SIO2 on porous alumina membranes: controlling the pore size and transport properties. Paper presented to SPIE Smart Materials, Nano-and Micro Smart Systems, 9-12 Decembr 2008, Melbourne, Australia. In: Voelcker, N. & Thissen, H. (eds), Smart Materials V, SPIE Smart Materials, Nano- & Micro-Smart Systems, Melbourne, December 9-122008, (Vol. 7267, pp. 72670S). doi:10.1117/12.810716