Possible excitonic insulating phase in quantum-confined Sb nanoflakes
dc.contributor.author | Li, Z | en_AU |
dc.contributor.author | Nadeem, MA | en_AU |
dc.contributor.author | Yue, ZJ | en_AU |
dc.contributor.author | Cortie, DL | en_AU |
dc.contributor.author | Fuhrer, MS | en_AU |
dc.contributor.author | Wang, XL | en_AU |
dc.date.accessioned | 2024-12-05T22:43:03Z | en_AU |
dc.date.available | 2024-12-05T22:43:03Z | en_AU |
dc.date.issued | 2019-07-10 | en_AU |
dc.date.statistics | 2024-05-09 | en_AU |
dc.description.abstract | In the 1960s, it was proposed that in small indirect band-gap materials, excitons can spontaneously form because the density of carriers is too low to screen the attractive Coulomb interaction between electrons and holes. The result is a novel strongly interacting insulating phase known as an excitonic insulator. Here we employ scanning tunnelling microscopy (STM) and spectroscopy (STS) to show that the enhanced Coulomb interaction in quantum-confined elemental Sb nanoflakes drives the system to the excitonic insulator state. The unique feature of the excitonic insulator, a charge density wave (CDW) without periodic lattice distortion, is directly observed. Furthermore, STS shows a gap induced by the CDW near the Fermi surface. Our observations suggest that the Sb(110) nanoflake is an excitonic insulator. © 2019 American Chemical Society. | en_AU |
dc.description.sponsorship | We acknowledge support from the Australian Research Council (ARC) through the ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET, CE170100039). X.W. acknowledges support from an ARC Professorial Future Fellowship project (FT130100778). Z.L. acknowledges support by ARC Discovery Projects (DE190100219, DP160101474, DP170104116) and the University of Wollongong through the Vice Chancellor’s Postdoctoral Research Fellowship Scheme. M.S.F. acknowledges the support of an ARC Laureate Fellowship FL120100038. The STM instruments and consumables are partially supported by DP170101467, LE100100081, and LE110100099. We thank Professor Chao Zhang for the helpful discussion. | en_AU |
dc.format.medium | Print-Electronic | en_AU |
dc.identifier.citation | Li, Z., Nadeem, M., Yue, Z., Cortie, D., Fuhrer, M., & Wang, X. (2019). Possible excitonic insulating phase in quantum-confined Sb nanoflakes. Nano letters, 19(8), 4960-4964. doi:10.1021/acs.nanolett.9b01123 | en_AU |
dc.identifier.issn | 1530-6984 | en_AU |
dc.identifier.issn | 1530-6992 | en_AU |
dc.identifier.issue | 8 | en_AU |
dc.identifier.journaltitle | Nano Letters | en_AU |
dc.identifier.pagination | 4960-4964 | en_AU |
dc.identifier.uri | https://doi.org/10.1021/acs.nanolett.9b01123 | en_AU |
dc.identifier.uri | https://apo.ansto.gov.au/handle/10238/15790 | en_AU |
dc.identifier.volume | 19 | en_AU |
dc.language | English | en_AU |
dc.language.iso | en | en_AU |
dc.publisher | American Chemical Society | en_AU |
dc.subject | Antimony | en_AU |
dc.subject | Excitons | en_AU |
dc.subject | Coulomb field | en_AU |
dc.subject | Electrical insulators | en_AU |
dc.subject | Quantum computers | en_AU |
dc.subject | Nanoparticles | en_AU |
dc.subject | Microscopy | en_AU |
dc.subject | Spectroscopy | en_AU |
dc.subject | Electrons | en_AU |
dc.title | Possible excitonic insulating phase in quantum-confined Sb nanoflakes | en_AU |
dc.type | Journal Article | en_AU |
Files
License bundle
1 - 1 of 1