Possible excitonic insulating phase in quantum-confined Sb nanoflakes

dc.contributor.authorLi, Zen_AU
dc.contributor.authorNadeem, MAen_AU
dc.contributor.authorYue, ZJen_AU
dc.contributor.authorCortie, DLen_AU
dc.contributor.authorFuhrer, MSen_AU
dc.contributor.authorWang, XLen_AU
dc.date.accessioned2024-12-05T22:43:03Zen_AU
dc.date.available2024-12-05T22:43:03Zen_AU
dc.date.issued2019-07-10en_AU
dc.date.statistics2024-05-09en_AU
dc.description.abstractIn the 1960s, it was proposed that in small indirect band-gap materials, excitons can spontaneously form because the density of carriers is too low to screen the attractive Coulomb interaction between electrons and holes. The result is a novel strongly interacting insulating phase known as an excitonic insulator. Here we employ scanning tunnelling microscopy (STM) and spectroscopy (STS) to show that the enhanced Coulomb interaction in quantum-confined elemental Sb nanoflakes drives the system to the excitonic insulator state. The unique feature of the excitonic insulator, a charge density wave (CDW) without periodic lattice distortion, is directly observed. Furthermore, STS shows a gap induced by the CDW near the Fermi surface. Our observations suggest that the Sb(110) nanoflake is an excitonic insulator. © 2019 American Chemical Society.en_AU
dc.description.sponsorshipWe acknowledge support from the Australian Research Council (ARC) through the ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET, CE170100039). X.W. acknowledges support from an ARC Professorial Future Fellowship project (FT130100778). Z.L. acknowledges support by ARC Discovery Projects (DE190100219, DP160101474, DP170104116) and the University of Wollongong through the Vice Chancellor’s Postdoctoral Research Fellowship Scheme. M.S.F. acknowledges the support of an ARC Laureate Fellowship FL120100038. The STM instruments and consumables are partially supported by DP170101467, LE100100081, and LE110100099. We thank Professor Chao Zhang for the helpful discussion.en_AU
dc.format.mediumPrint-Electronicen_AU
dc.identifier.citationLi, Z., Nadeem, M., Yue, Z., Cortie, D., Fuhrer, M., & Wang, X. (2019). Possible excitonic insulating phase in quantum-confined Sb nanoflakes. Nano letters, 19(8), 4960-4964. doi:10.1021/acs.nanolett.9b01123en_AU
dc.identifier.issn1530-6984en_AU
dc.identifier.issn1530-6992en_AU
dc.identifier.issue8en_AU
dc.identifier.journaltitleNano Lettersen_AU
dc.identifier.pagination4960-4964en_AU
dc.identifier.urihttps://doi.org/10.1021/acs.nanolett.9b01123en_AU
dc.identifier.urihttps://apo.ansto.gov.au/handle/10238/15790en_AU
dc.identifier.volume19en_AU
dc.languageEnglishen_AU
dc.language.isoenen_AU
dc.publisherAmerican Chemical Societyen_AU
dc.subjectAntimonyen_AU
dc.subjectExcitonsen_AU
dc.subjectCoulomb fielden_AU
dc.subjectElectrical insulatorsen_AU
dc.subjectQuantum computersen_AU
dc.subjectNanoparticlesen_AU
dc.subjectMicroscopyen_AU
dc.subjectSpectroscopyen_AU
dc.subjectElectronsen_AU
dc.titlePossible excitonic insulating phase in quantum-confined Sb nanoflakesen_AU
dc.typeJournal Articleen_AU
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.66 KB
Format:
Plain Text
Description:
Collections