Linearly interlinked Fe‐Nx‐Fe single atoms catalyze high‐rate sodium‐sulfur batteries

dc.contributor.authorRuan, JFen_AU
dc.contributor.authorLei, YJen_AU
dc.contributor.authorFan, YMen_AU
dc.contributor.authorBorras, MCen_AU
dc.contributor.authorLuo, ZXen_AU
dc.contributor.authorYan, ZCen_AU
dc.contributor.authorJohannessen, Ben_AU
dc.contributor.authorGu, QFen_AU
dc.contributor.authorKonstantinov, Ken_AU
dc.contributor.authorPang, WKen_AU
dc.contributor.authorSun, WPen_AU
dc.contributor.authorWang, JZen_AU
dc.contributor.authorLiu, HKen_AU
dc.contributor.authorLai, WHen_AU
dc.contributor.authorWang, YXen_AU
dc.contributor.authorDou, SXen_AU
dc.date.accessioned2025-07-03T06:11:47Zen_AU
dc.date.available2025-07-03T06:11:47Zen_AU
dc.date.issued2024-02-08en_AU
dc.date.statistics2025-07en_AU
dc.description.abstractLinearly interlinked single atoms offer unprecedented physiochemical properties, but their synthesis for practical applications still poses significant challenges. Herein, linearly interlinked iron single‐atom catalysts that are loaded onto interconnected carbon channels as cathodic sulfur hosts for room‐temperature sodium‐sulfur batteries are presented. The interlinked iron single‐atom exhibits unique metallic iron bonds that facilitate the transfer of electrons to the sulfur cathode, thereby accelerating the reaction kinetics. Additionally, the columnated and interlinked carbon channels ensure rapid Na+ diffusion kinetics to support high‐rate battery reactions. By combining the iron atomic chains and the topological carbon channels, the resulting sulfur cathodes demonstrate effective high‐rate conversion performance while maintaining excellent stability. Remarkably, even after 5000 cycles at a current density of 10 A g−1, the Na‐S battery retains a capacity of 325 mAh g−1. This work can open a new avenue in the design of catalysts and carbon ionic channels, paving the way to achieve sustainable and high‐performance energy devices. ©2024 The Authors. Advanced Materials published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.en_AU
dc.description.sponsorshipJ.F.R. and Y.-J.L. contributed equally to this work. W.H. Lai would like to acknowledge the financial supported by the Australian Research Council (DE220101113, DP220103301, DP230100198, and DP200100365). Z. Yan thanks the support provided by the National Natural Science Foundation of China (22109041). This research used equipment funded by an Australian Research Council (ARC) Linkage, Infrastructure, Equipment and Facilities (LIEF) grant (ARC-LIEF Grant number) located at the UOW Electron Microscopy Centre. A part of this work was carried out at the Powder Diffraction beamline (beamtime: M20117), and the wiggler XAS beamline (12-ID) (beamtime: M20098) at the Australian Synchrotron, under merit programs. The authors are extremely grateful for the operational support of ANSTO staff, especially Dr. Lars Thomsen and Dr. Bruce Cowie, on the synchrotron data collection. The authors also thank Dr. Tania Silver for her critical reading of this work. Open access publishing facilitated by University of Wollongong, as part of the Wiley - University of Wollongong agreement via the Council of Australian University Librarians.en_AU
dc.format.mediumPrint-Electronicen_AU
dc.identifier.citationRuan, J., Lei, Y.-J., Fan, Y., Borras, M. C., Luo, Z., Yan, Z., Johannessen, B., Gu, Q., Konstantinov, K., Pang, W. K., Sun, W., Wang, J.-Z., Liu, H.-K., Lai, W.-H., Wang, Y.-X., & Dou, S.-X. (2024). Linearly interlinked Fe‐Nx‐Fe single atoms catalyze high‐rate sodium‐sulfur batteries. Advanced Materials, 36(21), 2312207. doi:10.1002/adma.202312207en_AU
dc.identifier.issn0935-9648en_AU
dc.identifier.issn1521-4095en_AU
dc.identifier.issue21en_AU
dc.identifier.journaltitleAdvanced Materialsen_AU
dc.identifier.paginatione2312207-en_AU
dc.identifier.urihttp://dx.doi.org/10.1002/adma.202312207en_AU
dc.identifier.urihttps://apo.ansto.gov.au/handle/10238/16240en_AU
dc.identifier.volume36en_AU
dc.languageEnglishen_AU
dc.language.isoenen_AU
dc.publisherWileyen_AU
dc.subjectIronen_AU
dc.subjectSodiumen_AU
dc.subjectAtomsen_AU
dc.subjectSynthesisen_AU
dc.subjectEnergy storageen_AU
dc.subjectEnergy storage systemsen_AU
dc.subjectKineticsen_AU
dc.subjectRoadway-powered Electric Vehiclesen_AU
dc.subjectCatalystsen_AU
dc.subjectElectron transferen_AU
dc.subjectNitrogenen_AU
dc.titleLinearly interlinked Fe‐Nx‐Fe single atoms catalyze high‐rate sodium‐sulfur batteriesen_AU
dc.typeJournal Articleen_AU
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Advanced Materials - 2024 - Ruan - Linearly Interlinked Fe‐Nx‐Fe Single Atoms Catalyze High‐Rate Sodium‐Sulfur Batteries.pdf
Size:
4.11 MB
Format:
Adobe Portable Document Format
Description:
Loading...
Thumbnail Image
Name:
adma202312207-sup-0001-suppmat.pdf
Size:
3.13 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.66 KB
Format:
Plain Text
Description:
Collections