Anisotropic thermal and guest-induced responses of an ultramicroporous framework with rigid linkers

No Thumbnail Available
Date
2018-02-16
Journal Title
Journal ISSN
Volume Title
Publisher
John Wiley & Sons, Inc
Abstract
The interdependent effects of temperature and guest uptake on the structure of the ultramicroporous metal–organic framework [Cu3(cdm)4] (cdm=C(CN)2(CONH2)−) were explored in detail by using in situ neutron scattering and density functional theory calculations. The tetragonal lattice displays an anisotropic thermal response related to a hinged “lattice-fence” mechanism, unusual for this topology, which is facilitated by pivoting of the rigid cdm anion about the Cu nodes. Calculated pore-size metrics clearly illustrate the potential for temperature-mediated adsorption in ultramicroporous frameworks due to thermal fluctuations of the pore diameter near the value of the target guest kinetic diameter, though in [Cu3(cdm)4] this is counteracted by a competing contraction of the pore with increasing temperature as a result of the anisotropic lattice response. © 2018 Wiley-VCH Verlag GmbH & Co.
Description
Keywords
Density functional method, Sorption, Gases, Thermal expansion, Neutron diffraction, Temperature, Crystal lattices
Citation
Auckett, J. E., Duyker, S. G., Izgorodina, E. I., Hawes, C. S., Turner, D. R., Batten, S. R., & Peterson, V. K. (2018). Anisotropic thermal and guest-induced responses of an ultramicroporous framework with rigid linkers. Chemistry - A European Journal, 24(19), 4774-4779. doi:10.1002/chem.201800261
Collections