Repository logo


Anisotropic thermal and guest-induced responses of an ultramicroporous framework with rigid linkers

Loading...
Thumbnail Image

Journal Title

Journal ISSN

Volume Title

Publisher

John Wiley & Sons, Inc

Abstract

The interdependent effects of temperature and guest uptake on the structure of the ultramicroporous metal–organic framework [Cu3(cdm)4] (cdm=C(CN)2(CONH2)−) were explored in detail by using in situ neutron scattering and density functional theory calculations. The tetragonal lattice displays an anisotropic thermal response related to a hinged “lattice-fence” mechanism, unusual for this topology, which is facilitated by pivoting of the rigid cdm anion about the Cu nodes. Calculated pore-size metrics clearly illustrate the potential for temperature-mediated adsorption in ultramicroporous frameworks due to thermal fluctuations of the pore diameter near the value of the target guest kinetic diameter, though in [Cu3(cdm)4] this is counteracted by a competing contraction of the pore with increasing temperature as a result of the anisotropic lattice response. © 2018 Wiley-VCH Verlag GmbH & Co.

Description

Citation

Auckett, J. E., Duyker, S. G., Izgorodina, E. I., Hawes, C. S., Turner, D. R., Batten, S. R., & Peterson, V. K. (2018). Anisotropic thermal and guest-induced responses of an ultramicroporous framework with rigid linkers. Chemistry - A European Journal, 24(19), 4774-4779. doi:10.1002/chem.201800261

Collections

Endorsement

Review

Supplemented By

Referenced By