Browsing by Author "de los Reyes, M"
Now showing 1 - 16 of 16
Results Per Page
Sort Options
- ItemCrystal structure influence on ion-irradiation tolerance of Ln2TiO5 compounds(Engineers Australia, 2014-11-26) Aughterson, RD; Lumpkin, GR; Gault, B; Whittle, KR; de los Reyes, M; Smith, KL; Cairney, JMAs a controllable and reproducible technique ion beam irradiation is routinely used as a method for simulating recoil damage caused by alpha-decay in actinide containing materials and neutron damage within fission and fusion reactor systems [1]. The transition from a crystalline to amorphous structure may lead to larger scale effects in the material properties such as an increase in volume (swelling) linked to the generation and agglomeration of defects and decreased thermodynamic and structural stability. Compounds in this study consist of the nominal stoichiometry Ln2TiO5 (where Ln represents the lanthanide series plus yttrium). There are 4 crystal structure symmetries in this series; orthorhombic Pnma, hexagonal P63/mmc, cubic (pyrochlore-like) Fd-3m and cubic (fluorite-like) Fm-3m. The final structure is dependent upon the lanthanide size and processing conditions used (pressure and temperature regime) [2]. Ln2TiO5 compounds have been proposed for potential nuclear based applications [3]. For example, Dy2TiO5 has been incorporated into inert matrix fuel as a neutron absorber [4] and Gd2TiO5 has also been proposed for similar use [5] and it’s radiation tolerance has been tested for this purpose [6]. In this study a systematic series of samples of the nominal stoichiometry Sm(x)Yb(2-x)TiO5 (where x = 2, 1.4, 1, 0.6, and 0) are used to test and compare the ion-irradiation tolerance of the major structures within the Ln2TiO5 system of compounds. An improved radiation tolerance with the higher symmetry cubic structures was found, which is consistent with previous studies of similar compounds.
- ItemDefect evolution in a NiMoCrFe alloy subjected to high-dose Kr ion irradiation at elevated temperature(Elsevier B.V., 2016-06-01) de los Reyes, M; Voskoboinikov, R; Kirk, MA; Huang, HF; Lumpkin, GR; Bhattacharyya, DA candidate NiMoCrFe alloy (GH3535) for application as a structural material in a molten salt nuclear reactor was irradiated with 1 MeV Kr2+ ions (723 K, max dose of 100 dpa) at the IVEM-Tandem facility. The evolution of defects like dislocation loops and vacancy- and self-interstitial clusters was examined in-situ. For obtaining a deeper insight into the true nature of these defects, the irradiated sample was further analysed under a TEM post-facto. The results show that there is a range of different types of defects formed under irradiation. Interaction of radiation defects with each other and with pre-existing defects, e.g., linear dislocations, leads to the formation of complex microstructures. Molecular dynamics simulations used to obtain a greater understanding of these defect transformations showed that the interaction between linear dislocations and radiation induced dislocation loops could form faulted structures that explain the fringed contrast of these defects observed in TEM. © 2016 Elsevier B.V.
- ItemGradual structural evolution from pyrochlore to defect-fluorite in Y2Sn2-xZrxO7: average vs local structure(ACS Publications, 2013-11-25) Zhang, ZM; Middleburgh, SC; de los Reyes, M; Lumpkin, GR; Kennedy, BJ; Blanchard, PER; Reynolds, EM; Jang, LYWe have studied the long-range average and local structures in Y2Sn2−xZrxO7 (x = 0−2.0) using synchrotron X-ray powder diffraction and X-ray absorption spectroscopy, respectively, and by theoretical methods. While the diffraction data indicate a clear phase transition from ordered pyrochlore to disordered defectfluorite at x ∼ 1.0−1.2, X-ray absorption near-edge structure (XANES) results at the Zr L3- and Y L2-edges reveal a gradual structural evolution across the whole compositional range. These findings provide experimental evidence that the local disorder occurs long before the pyrochlore to defect-fluorite phase boundary, as determined by X-ray diffraction, and the extent of disorder continues to develop throughout the defectfluorite region. The Zr and Y L-edge spectra are very sensitive to changes in the local structure; such sensitivity enables us to reveal the progressive nature of the phase transition. Experimental results are supported by ab initio atomic scale simulations, which provide a mechanism for disorder to initiate in the pyrochlore structure. Further, the coordination numbers of the cations in both the defect-fluorite and pyrochlore structures are predicted, and the trends agree well with the experimental XANES results. The calculations predict that the coordination of cations in the Y2Zr2O7 defect-fluorite (normally considered to be 7 for all cations) varies depending on the species with the average coordination of Y and Zr being 7.2 and 6.8, respectively. © 2013, American Chemical Society.
- ItemHydrolytic stability of mesoporous zirconium titanate frameworks containing coordinating organic functionalities(American Chemical Society, 2013-04-12) de los Reyes, M; Majewski, PJ; Scales, N; Luca, VThe hydrolytic stability of lanthanide and actinide selective mono- and polyphosphonate-functionalized mesoporous zirconium titanium oxide adsorbents has been investigated in nitric acid solutions. Hydrolytic degradation of the surfaces, as measured through the fractional loss of phosphorus and elements of the oxide framework, increased by more than an order of magnitude as the nitric acid concentration was increased from 0 to 2 mol/L. The unfunctionalized parent oxide suffered considerable dissolution in 2 mol/L acid over a period of 72 h. Under identical conditions, the fractional Zr and Ti release was reduced to 1 × 10–2 for monophosphonate functionalized hybrids and reached as low as 1 × 10–6 for trisphosphonate functionalized variants. The bisphosphonates showed intermediate values. The leaching of P, Zr and Ti was found to be incongruent with the Zr leaching to a lesser extent implying enhanced stability of the Zr–O–P bond. Quantitative analysis of the dissolution kinetics indicated a parabolic dissolution model with a rate constant in the range of 0.5–1.5 mg g–1 min–1/2 for the elemental leaching of P, Ti, and Zr. The leaching of Zr from the mesoporous matrix was relatively more complex than for the other elements with evidence of a leaching mechanism involving two processes. ToF-SIMS and DRIFT analysis demonstrated that after leaching in 2 M HNO3 for 24 h, a significant proportion of grafted ligands remained on the surface. The oxide functionalized with amino trismethylenephosphonic acid, which had previously shown excellent 153Gd3+ selectivity, was demonstrated to have outstanding stability, with low fractional elemental losses and preservation of mesoporous texture even after leaching for 24 h in 2 M HNO3. This suggests this particular hybrid to be worthy of additional study. © 2013, American Chemical Society.
- ItemThe influence of crystal structure on ion-irradiation tolerance in the Sm(x)Yb(2-x)TiO5 series(Elsevier B.V., 2016-04-01) Aughterson, RD; Lumpkin, GR; de los Reyes, M; Gault, B; Baldo, P; Ryan, EA; Whittle, KR; Smith, KL; Cairney, JMThis ion-irradiation study covers the four major crystal structure types in the Ln2TiO5 series (Ln = lanthanide), namely orthorhombic Pnma, hexagonal P63/mmc, cubic (pyrochlore-like) Fd-3m and cubic (fluorite-like) Fm-3m. This is the first systematic examination of the complete Ln2TiO5 crystal system and the first reported examination of the hexagonal structure. A series of samples, based on the stoichiometry Sm(x)Yb(2-x)TiO5 (where x = 2, 1.4, 1, 0.6, and 0) have been irradiated using 1 MeV Kr2+ ions and characterised in-situ using a transmission electron microscope. Two quantities are used to define ion-irradiation tolerance: critical dose of amorphisation (Dc), which is the irradiating ion dose required for a crystalline to amorphous transition, and the critical temperature (Tc), above which the sample cannot be rendered amorphous by ion irradiation. The structure type plus elements of bonding are correlated to ion-irradiation tolerance. The cubic phases, Yb2TiO5 and Sm0.6Yb1.4TiO5, were found to be the most radiation tolerant, with Tc values of 479 and 697 K respectively. The improved radiation tolerance with a change in symmetry to cubic is consistent with previous studies of similar compounds. © 2016 Elsevier B.V.
- ItemIon beam irradiation of ABO4 compounds with the fergusonite, monazite, scheelite, and zircon structures(https://doi.org/10.1111/jace.17288, 2020-06-04) de los Reyes, M; Aughterson, RD; Gregg, DJ; Middleburgh, SC; Zaluzec, NJ; Huai, P; Ren, CL; Lumpkin, GRThe effects of irradiation on CaWO4, SrWO4, BaWO4, YVO4, LaVO4, YNbO4, and LaNbO4 were investigated on thin crystals using 1.0 MeV Kr ions at 50‐1000 K. All of the ABO4 compounds can be amorphized with calculated damage cross sections (σa = 1/Fc0) in the range of ~0.30‐1.09 × 10‐14 cm2 ion−1 at zero Kelvin. The analysis of fluence‐temperature data returned critical temperatures for amorphization (Tc) of 311 ± 1, 358 ± 90, 325 ± 19, 415 ± 17, 541 ± 6, 636 ± 26, and 1012 ± 1 K, respectively, for the compounds listed above. Compared with previous in situ irradiation of ABO4 orthophosphate samples using 0.8 MeV Kr ions, the Tc values of LaVO4 and YVO4 are higher than those of LaPO4 and YPO4 by 82 K and 124 K, respectively. The Tc values of the three scheelite structures, CaWO4, SrWO4, and BaWO4, indicate that they are the most radiation tolerant compounds under these conditions. The A‐B cation anti‐site energies, EfAB, determined by DFT range from 2.48 to 10.58 eV and are highly correlated with the A‐B cation ionic radius ratio, rA/rB, but are not correlated with Tc across the different structure types, suggesting that the formation and migration energies of Frenkel defects play a more important role in damage recovery in these compounds. We also discuss the role of cation and anion charge/iconicity as determined by DFT. ABO4 compounds with the zircon structure and B = P or V have a distinct advantage over those with B = Si as the damaged regions do not appear to be significantly affected by polymerization of (PO4)3− or (VO4)3− groups which might stabilize the amorphous fraction and ultimately lead to phase separation as observed in zircon (ZrSiO4). © 1999-2020 John Wiley & Sons, Inc.
- ItemIon-irradiation resistance of the orthorhombic Ln2TiO5 (Ln = La, Pr, Nd, Sm, Eu, Gd, Tb and Dy) series(Elsevier, 2015-12-01) Aughterson, RD; Lumpkin, GR; Ionescu, M; de los Reyes, M; Gault, B; Whittle, KR; Smith, KL; Cairney, JMThe response of Ln2TiO5 (where Ln is a lanthanide) compounds exposed to high-energy ions was used to test their suitability for nuclear-based applications, under two different but complementary conditions. Eight samples with nominal stoichiometry Ln2TiO5 (Ln = La, Pr, Nd, Sm, Eu, Gd, Tb and Dy), of orthorhombic (Pnma) structure were irradiated, at various temperatures, with 1 MeV Kr2+ ions in-situ within a transmission electron microscope. In each case, the fluence was increased until a phase transition from crystalline to amorphous was observed, termed critical dose Dc. At certain elevated temperatures, the crystallinity was maintained irrespective of fluence. The critical temperature for maintaining crystallinity, Tc, varied non-uniformly across the series. The Tc was consistently high for La, Pr, Nd and Sm2TiO5 before sequential improvement from Eu to Dy2TiO5 with Tc's dropping from 974 K to 712 K. In addition, bulk Dy2TiO5 was irradiated with 12 MeV Au+ ions at 300 K, 723 K and 823 K and monitored via grazing-incidence X-ray diffraction (GIXRD). At 300 K, only amorphisation is observed, with no transition to other structures, whilst at higher temperatures, specimens retained their original structure. The improved radiation tolerance of compounds containing smaller lanthanides has previously been attributed to their ability to form radiation-induced phase transitions. No such transitions were observed here. © 2017 Elsevier B.V.
- ItemThe ion-irradiation tolerance of the pyrochlore to fluorite Ho(x)Yb(2-x)TiO5 and Er2TiO5 compounds: a TEM comparative study using both in-situ and bulk ex-situ irradiation approaches(Elsevier, 2018-08-15) Aughterson, RD; Lumpkin, GR; Smith, KL; de los Reyes, M; Davis, J; Avdeev, M; Ridgway, MC; Cairney, JMWe refine the crystal structures of a systematic series of compounds with the general composition Ho(x)Yb(2-x)TiO5 (x = 2, 1.6, 1.2, 1, 0.8, 0.4, 0) and Er2TiO5 and find a transition from defect-pyrochlore to defect-fluorite structure with increasing ytterbium content, decreasing lanthanide radius. Short-range structure modulations consisting of pyrochlore-like nano-domains are systematically characterised using transmission electron microscopy. We test the Kr2+ 1 MeV ion-irradiation response of Ho2TiO5, HoYbTiO5, Yb2TiO5, and Er2TiO5, via the crystalline to amorphous transition observed by using the in-situ TEM approach. The critical dose of amorphisation, Dc, was measured at various temperatures and used to calculate the critical temperature for maintaining crystallinity, Tc. A trend of lower Tc values with decreasing lanthanide radius is found. We describe a new approach for determining Tc values using cross-sectional TEM analysis of ex-situ bulk irradiated, 1 MeV Se+, samples; Ho2TiO5, HoYbTiO5 and Yb2TiO5. The results of Dc and Tc values using the two approaches vary; however the trends across the sample system remain the same. © 2018 Published by Elsevier B.V.
- ItemMicrostructural evolution of an ion irradiated Ni–Mo–Cr–Fe alloy at elevated temperatures(Materials Transactions, 2014-01-01) de los Reyes, M; Edwards, L; Kirk, MA; Bhattacharyya, D; Lu, KT; Lumpkin, GRThe irradiation behavior of a Ni–Mo–Cr–Fe alloy, of the type currently being considered for use in future molten salt cooled reactors, has been investigated in situ using 1 MeV Kr ions at temperatures of 723 and 973 K. When irradiated to 5 dpa, experimental observations reveal the instantaneous formation and annihilation of point defect clusters, with such processes attributed to the long range elastic interactions that occur between defects through multiple intra-cascade overlap. Corresponding differences in the defect cluster density and size distribution suggest that changes to the microstructure were dependent upon temperature and dose, affecting the growth, accumulation and mobility of irradiation-induced defect clusters under these conditions. © 2014,The Japan Institute of Metals and Materials.
- ItemNew insights into phase distribution, phase composition and disorder in Y2(Zr,Sn)2O7 ceramics from NMR spectroscopy(Royal Society of Chemistry, 2015-03-02) Ashbrook, SE; Mitchell, MR; Sneddon, S; Moran, RF; de los Reyes, M; Lumpkin, GR; Whittle, KRA combination of 89Y and 119Sn NMR spectroscopy and DFT calculations are used to investigate phase evolution, local structure and disorder in Y2Zr2−xSnxO7 ceramics, where a phase change is predicted, from pyrochlore to defect fluorite, with increasing Zr content. The ability of NMR to effectively probe materials that exhibit positional and compositional disorder provides insight into the atomic-scale structure in both ordered and disordered phases and, by exploiting the quantitative nature of the technique, we are able to determine detailed information on the composition of the phase(s) present and the average coordination number (and next-nearest neighbour environment) of the cations. In contrast to previous studies, a more complex picture of the phase variation with composition emerges, with single-phase pyrochlore found only for the Sn end member, and a single defect fluorite phase only for x = 0 to 0.6. A broad two-phase region is observed, from x = 1.8 to 0.8, but the two phases present have very different composition, with a maximum of 13% Zr incorporated into the pyrochlore phase, whereas the composition of the defect fluorite phase varies throughout. Preferential ordering of the anion vacancies in the defect fluorite phase is observed, with Sn only ever found in a six-coordinate environment, while remaining vacancies are shown to be more likely to be associated with Zr than Y. Our findings are then discussed in the light of those from previous studies, many of which utilize diffraction-based approaches, where, in most cases, a single phase of fixed composition has been assumed for the refinement procedure. The significant and surprising differences encountered demonstrate the need for complementary approaches to be considered for a detailed and accurate picture of both the long- and short-range structure of a solid to be achieved. © Royal Society of Chemistry 2017
- ItemProbing long- and short-range disorder in Y2Ti2–xHfxO7 by diffraction and spectroscopy techniques(American Chemical Society, 2016-11-01) Zhang, ZM; Avdeev, M; de los Reyes, M; Lumpkin, GR; Kennedy, BJ; Blanchard, PER; Liu, S; Tadich, A; Cowie, BCCWe studied the long-range average and short-range local structures in Y2Ti2–xHfxO7 (x = 0–2.0) using diffraction and spectroscopy techniques, respectively. Both neutron and synchrotron X-ray powder diffraction data show a clear phase transition of the average structure from ordered pyrochlore to disordered defect-fluorite at x ≈ 1.6; the long-range anion disorder appears to develop gradually throughout the entire pyrochlore region in contrast to the rapid loss of cation ordering from x = 1.4 to 1.6. The commonly observed two-phase region around the pyrochlore/defect-fluorite phase boundary is absent in this system, demonstrating high sample quality. X-ray absorption near-edge structure (XANES) results at the Y L2-, Ti K- and L3,2-, Hf L3-, and O K-edges indicate a gradual local structural evolution across the whole compositional range; the Y coordination number (CN) decreases and the CN around Ti and Hf increases with increasing Hf content (x). The spectroscopic results suggest that the local disorder occurs long before the pyrochlore to defect-fluorite phase boundary as determined by diffraction, and this disorder evolves continuously from short- to medium- and eventually to long-range detectable by diffraction. This study highlights the complex disordering process in pyrochlore oxides and the importance of a multitechnique approach to tackle disorder over different length scales and in the anion and cation sublattices, respectively. The results are important in the context of potential applications of these oxides such as ionic conductors and radiation-resistant nuclear waste forms. © 2016 American Chemical Society
- ItemThe pyrochlore to defect fluorite phase transition in Y2Sn2-xZrxO7(Royal Society of Chemistry, 2013-01-30) de los Reyes, M; Whittle, KR; Zhang, ZM; Ashbrook, SE; Mitchell, MR; Jang, LY; Lumpkin, GRThe system Y2Sn2−xZrxO7 (0.0 ≤ x ≤ 2.0) undergoes a phase transformation from ordered pyrochlore (Fdm) to defect fluorite (Fmm) actuated by the substitution of Zr for Sn. X-ray diffraction patterns map the retention of the pyrochlore structure up to x = 1.2. For samples with x = 1.4–2.0 the structure can be described as defect fluorite in broad terms. Electron diffraction patterns are consistent with this interpretation; however, they also demonstrate that the defect fluorite phase exhibits a strain driven compositional/displacive modulation that changes gradually with increasing Zr content. Raman spectra are consistent with gradual anion disorder up to x = 1.0 and highly disordered anion distributions inferred for x > 1.4, but the spectra also suggest the presence of residual order due to the modulated structure. The phase transformation in this system occurs at a higher Zr content than predicted by classical radius ratio models, consistent with the covalent character of Sn–O bonding. An unusual finding of this work comes from 119Sn MAS NMR and Sn L3-edge XANES analyses, indicating that Sn4+ prefers to occupy lattice sites with a 6-fold local coordination environment throughout the series. These results suggest that the incorporation of Sn or other metal cations having significant covalent bonding or a strong preference for octahedral coordination in pyrochlore-based materials may have a detrimental effect on ionic conductivity. © 2013, The Royal Society of Chemistry.
- ItemPyrochlore-defect fluorite phase transitions and stability in the Y2Sn2-xZrxO7 system(Committee of Asia-Pacific Societies of Microscopy, 2012-02-07) de los Reyes, M; Whittle, KR; Elliman, RG; Zaluzec, NJ; Ashbrook, SE; Mitchell, MR; Lumpkin, GRThe Y2Sn2-xZrxO7 pyrochlore series undergoes a phase transformation from a cubic pyrochlore structure type (Fd3m) to defect fluorite (Fm3m) actuated by an increase in Zr content, coupled with thermal annealing above 1500 °C. X-ray diffraction analysis reveals the onset of a pyrochlore to defect fluorite transition at Y2Sn0.8Zr1.2O7 with the loss of long range ordering. This is confirmed further by selected area electron diffraction (SAED) illustrating shorter range ordering in the defect fluorite phase incommensurate with unit cell size. This transformation however, occurs at a much higher Zr content than that predicted by classical radius ratio models. The diffuse scattering features observed in electron diffraction patterns of defect fluorite phases indicate some form of shorter range ordering involving compositional-displacive structural modulation. The behaviour of these materials during irradiation will be discussed and linked with the observed structural parameters (diffuse scattering, unit cell size).
- ItemPyrochlore-fluorite transition in Y2Sn2-xZrxO7 - implications for stability(Australian Institute of Physics, 2011-02-02) de los Reyes, M; Whittle, KR; Mitchell, MR; Ashbrook, SE; Lumpkin, GRThe pyrochlore-fluorite transition is an important factor in determining how materials behave under conditions of irradiation, whether it be as a waste form or as a nuclear material, e.g. ODS additive. Yttrium based materials are often added as oxides to metallic systems, e.g. oxide dispersion strengthened (ODS) steels, which have a wide range of applications. As part of a large programme of research investigating and developing materials which show a high degree of radiation damage resistance, materials based on Y2Sn2-xZrxO7 have been studied. The materials have been examined to determine the order-disorder transition (pyrochlorefluorite), and how this effects the radiation damage resistance, particularly as both end members have previously been shown to be resistant to damage/amorphisation. Results are presented from diffraction and spectroscopic studies showing the degree of order/disorder within the system.
- ItemSize matters: incorporation of poly(acrylic acid) and small molecules into hierarchically porous metal oxides prepared with and without templates(American Chemical Society, 2010-09-07) Drisko, GL; Imperia, P; de los Reyes, M; Luca, V; Caruso, RATemplate synthesis of metal oxides can create materials with highly controlled and reproducible pore structures that can be optimized for particular applications. Zirconium titanium oxides (25:75 mol %) with three different pore structures were synthesized in order to relate polymer loading capacity to macropore architecture. Sol−gel chemistry was used to prepare the materials in conjunction with (i) agarose gel templating, (ii) no template, and (iii) stearic acid templating. The three materials possessed high surface areas (212−316 m2 g−1). Surface modification was performed postsynthetically using propionic acid (a monomer), glutaric acid (a dimer), and three molecular weights of poly(acrylic acid) (2000, 100000, and 250000 g mol−1). Higher loading (mg g−1) was observed for the polymers than for the small molecules. Following surface modification, a perceptible decrease in surface area and mesopore volume was noted, but both mesoporosity and macroporosity were retained. The pore architecture had a strong bearing on the quantity and rate of polymer incorporation into metal oxides. The templated pellet with hierarchical porosity outperformed the nontemplated powder and the mesoporous monolith (in both loading capacity and surface coverage). The materials were subjected to irradiation with 60Co γ-rays to determine the radiolytic stability of the inorganic support and the hybrid material containing the monomer, dimer, and polymer. The polymer and the metal oxide substrate demonstrated notable radiolytic stability. © 2010, American Chemical Society
- ItemSoft chemical synthesis and structural characterization of Y2HfxTi2−xO7(Elsevier, 2015-05-04) Kong, L; Shang, Z; de los Reyes, M; Lumpkin, GR; Triani, G; Aughterson, RD; Karatchevtseva, IA novel soft chemistry route was developed to synthesize Y2HfxTi2−xO7 (0≤x≤2.0) oxide solid solution. An aqueous solution containing reactants was produced to ensure the combustion reaction taking place at the molecular level. A suite of characterization techniques, including X-ray diffraction, Raman, transmission electron spectroscopy, as well as X-ray absorption near edge structure (XANES), is employed to investigate the structural and phase changes of the series. Both X-ray and electron diffraction patterns show that the Y2HfxTi2−xO7 system undergoes a clear composition-induced phase transition from ordered pyrochlore to disordered defect-fluorite at x~1.5. On the other hand, Raman and XANES spectra reveal a gradual evolution of the local structure with the substitution of Hf for Ti. © 2014 Elsevier Ltd and Techna Group S.r.l.