The incorporation of Li2SO4 into barium borosilicate glass for nuclear waste immobilisation

dc.contributor.authorFarzana, Ren_AU
dc.contributor.authorDayal, Pen_AU
dc.contributor.authorKaratchevtseva, Ien_AU
dc.contributor.authorAly, Zen_AU
dc.contributor.authorGregg, DJen_AU
dc.date.accessioned2025-01-13T00:07:39Zen_AU
dc.date.available2025-01-13T00:07:39Zen_AU
dc.date.issued2022-03-15en_AU
dc.date.statistics2024-10-23en_AU
dc.description.abstractThis study has systematically investigated the effect of Li2SO4 addition (2.75 −16.5 wt%) in barium borosilicate glass, to provide a pathway to optimise the glass composition and maximise sulphate incorporation. The work also provides a mechanistic understanding as to how SO42- is incorporated within the glass structure. The highest sulphate incorporation of 2.78 wt% SO3 (from 11 wt% Li2SO4 addition) was achieved without crystallisation following melting at 1200 °C. Sulphate incorporation in glass was confirmed by XRF, ICP, EDS and Raman analysis. Addition of Li2SO4 along with sodium and barium oxides improved the sulphate incorporation by mixed alkali network depolymerisation and the larger Ba cations helped to create sufficient space within the boron-silicate network to incorporate sulphate ions into the glass. An immiscible sulphate layer rich in BaSO4 and Na2SO4 formed on top of the glass at lower temperature (800–1100 °C) and subsequent diffusion of Na, Ba oxides and sulphur from this layer increased with increasing time and temperature to form a sulphate incorporated amorphous glass. Addition of Na2O played an important role to improve sulphate incorporation in the glass, as well as formation of an immiscible layer on top of the glass however, the formation of Na2SO4 lowered the sulphur incorporation rate at high temperature compared to BaSO4. Increasing the Li2SO4 content in the glass decreased the glass transition temperature. Aqueous durability testing using the standard PCT tests indicated the glass had satisfactory aqueous durability compared to benchmark environmental assessment glass. This study provides opportunities to convert Li+ and SO42- rich nuclear wastes into appropriate glass wasteforms. © 2021 Elsevier B.V.en_AU
dc.identifier.articlenumber162746en_AU
dc.identifier.citationFarzana, R., Dayal, P., Karatchevtseva, I., Aly, Z., & Gregg, D. J. (2022). The incorporation of Li2SO4 into barium borosilicate glass for nuclear waste immobilisation. Journal of Alloys and Compounds, 897, 162746. doi:10.1016/j.jallcom.2021.162746en_AU
dc.identifier.issn0925-8388en_AU
dc.identifier.journaltitleJournal of Alloys and Compoundsen_AU
dc.identifier.urihttps://doi.org/10.1016/j.jallcom.2021.162746en_AU
dc.identifier.urihttps://apo.ansto.gov.au/handle/10238/15919en_AU
dc.identifier.volume897en_AU
dc.languageEnglishen_AU
dc.language.isoenen_AU
dc.publisherElsevieren_AU
dc.subjectLithiumen_AU
dc.subjectBariumen_AU
dc.subjectBorosilicate glassen_AU
dc.subjectNuclear materials managementen_AU
dc.subjectWastesen_AU
dc.subjectTemperature rangeen_AU
dc.subjectAqueous solutionsen_AU
dc.subjectSulfuren_AU
dc.subjectBarium oxidesen_AU
dc.subjectLithium sulfatesen_AU
dc.subjectRadioactive waste disposalen_AU
dc.subjectLow-level radioactive wastesen_AU
dc.subjectMolybdenum 99en_AU
dc.subjectSynroc processen_AU
dc.subjectANSTOen_AU
dc.subjectAustralian organizationsen_AU
dc.titleThe incorporation of Li2SO4 into barium borosilicate glass for nuclear waste immobilisationen_AU
dc.typeJournal Articleen_AU
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.66 KB
Format:
Plain Text
Description:
Collections