Elucidating the relationship between nanoparticle morphology, nuclear/magnetic texture and magnetic performance of sintered SrFe12O19 magnets

dc.contributor.authorSaura-Múzquiz, Men_AU
dc.contributor.authorEikeland, AZen_AU
dc.contributor.authorStingaciu, Men_AU
dc.contributor.authorAndersen, HLen_AU
dc.contributor.authorGranados-Miralles, Cen_AU
dc.contributor.authorAvdeev, Men_AU
dc.contributor.authorLuzin, Ven_AU
dc.contributor.authorChristensen, Men_AU
dc.date.accessioned2021-06-28T22:57:04Zen_AU
dc.date.available2021-06-28T22:57:04Zen_AU
dc.date.issued2020-04-22en_AU
dc.date.statistics2021-06-22en_AU
dc.description.abstractSeveral M-type SrFe12O19 nanoparticle samples with different morphologies have been synthesized by different hydrothermal and sol–gel synthesis methods. Combined Rietveld refinements of neutron and X-ray powder diffraction data with a constrained structural model reveal a clear correlation between crystallite size and long-range magnetic order, which influences the macroscopic magnetic properties of the sample. The tailor-made powder samples were compacted into dense bulk magnets (>90% of the theoretical density) by spark plasma sintering (SPS). Powder diffraction as well as X-ray and neutron pole figure measurements and analyses have been carried out on the compacted specimens in order to characterize the nuclear (structural) and magnetic alignment of the crystallites within the dense magnets. The obtained results, combined with macroscopic magnetic measurements, reveal a direct influence of the nanoparticle morphology on the self-induced texture, crystallite growth during compaction and macroscopic magnetic performance. An increasing diameter-to-thickness aspect ratio of the platelet-like nanoparticles leads to increasing degree of crystallite alignment achieved by SPS. Consequently, magnetically aligned, highly dense magnets with excellent magnetic performance (30(3) kJ m−3) are obtained solely by nanostructuring means, without application of an external magnetic field before or during compaction. The demonstrated control over nanoparticle morphology and, in turn, crystal and magnetic texture is a key step on the way to designing nanostructured hexaferrite magnets with optimized performance. © Royal Society of Chemistry 2020en_AU
dc.identifier.citationSaura-Múzquiz, M., Eikeland, A. Z., Stingaciu, M., Andersen, H. L., Granados-Miralles, C., Avdeev, M., Luzin, V., & Christensen, M. (2020). Elucidating the relationship between nanoparticle morphology, nuclear/magnetic texture and magnetic performance of sintered SrFe12O19 magnets. Nanoscale, 12(17), 9481-9494. doi:10.1039/D0NR01728Ken_AU
dc.identifier.issn2040-3372en_AU
dc.identifier.issue7en_AU
dc.identifier.journaltitleNanoscaleen_AU
dc.identifier.pagination9481-9494en_AU
dc.identifier.urihttps://doi.org/10.1039/D0NR01728Ken_AU
dc.identifier.urihttps://apo.ansto.gov.au/dspace/handle/10238/10930en_AU
dc.identifier.volume12en_AU
dc.language.isoenen_AU
dc.publisherRoyal Society of Chemistryen_AU
dc.subjectNanoparticlesen_AU
dc.subjectX-ray diffractionen_AU
dc.subjectNeutron diffractionen_AU
dc.subjectMagnetsen_AU
dc.subjectMorphologyen_AU
dc.subjectMagnetic fieldsen_AU
dc.titleElucidating the relationship between nanoparticle morphology, nuclear/magnetic texture and magnetic performance of sintered SrFe12O19 magnetsen_AU
dc.typeJournal Articleen_AU
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.63 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections