High-performance perovskite composite electrocatalysts enabled by controllable interface engineering

dc.contributor.authorXu, XMen_AU
dc.contributor.authorPan, YLen_AU
dc.contributor.authorGe, Len_AU
dc.contributor.authorChen, YBen_AU
dc.contributor.authorMao, Xen_AU
dc.contributor.authorGuan, DQen_AU
dc.contributor.authorLi, MRen_AU
dc.contributor.authorZhong, YJen_AU
dc.contributor.authorHu, ZWen_AU
dc.contributor.authorPeterson, VKen_AU
dc.contributor.authorSaunders, Men_AU
dc.contributor.authorChen, CTen_AU
dc.contributor.authorZhang, HJen_AU
dc.contributor.authorRan, Ren_AU
dc.contributor.authorDu, AJen_AU
dc.contributor.authorJiang, SPen_AU
dc.contributor.authorZhou, Wen_AU
dc.contributor.authorShao, ZPen_AU
dc.date.accessioned2021-07-30T05:21:14Zen_AU
dc.date.available2021-07-30T05:21:14Zen_AU
dc.date.issued2021-06-17en_AU
dc.date.statistics2021-07-28en_AU
dc.description.abstractSingle-phase perovskite oxides that contain nonprecious metals have long been pursued as candidates for catalyzing the oxygen evolution reaction, but their catalytic activity cannot meet the requirements for practical electrochemical energy conversion technologies. Here a cation deficiency-promoted phase separation strategy to design perovskite-based composites with significantly enhanced water oxidation kinetics compared to single-phase counterparts is reported. These composites, self-assembled from perovskite precursors, comprise strongly interacting perovskite and related phases, whose structure, composition, and concentration can be accurately controlled by tailoring the stoichiometry of the precursors. The composite catalyst with optimized phase composition and concentration outperforms known perovskite oxide systems and state-of-the-art catalysts by 1–3 orders of magnitude. It is further demonstrated that the strong interfacial interaction of the composite catalysts plays a key role in promoting oxygen ionic transport to boost the lattice-oxygen participated water oxidation. These results suggest a simple and viable approach to developing high-performance, perovskite-based composite catalysts for electrochemical energy conversion. © 2021 Wiley-VCH GmbHen_AU
dc.identifier.articlenumber2101573en_AU
dc.identifier.citationXu, X., Pan, Y., Ge, L., Chen, Y., Mao, X., Guan, D., Li, M., Zhong, Y., Hu, Z., Peterson, V. K., Saunders, M., Chen, C.-T., Zhang, H., Ran, R., Du, A., Jiang, S. P., Zhou, W. & Shao, Z. (2021). High‐performance perovskite composite electrocatalysts enabled by controllable interface engineering. Small, 17(29), 2101573. doi:10.1002/smll.202101573en_AU
dc.identifier.issn1613-6829en_AU
dc.identifier.issue29en_AU
dc.identifier.journaltitleSmallen_AU
dc.identifier.urihttps://doi.org/10.1002/smll.202101573en_AU
dc.identifier.urihttps://apo.ansto.gov.au/dspace/handle/10238/11191en_AU
dc.identifier.volume17en_AU
dc.language.isoenen_AU
dc.publisherJohn Wiley & Sons, Incen_AU
dc.subjectCationsen_AU
dc.subjectOxygenen_AU
dc.subjectPerovskiteen_AU
dc.subjectOxide mineralsen_AU
dc.subjectElectrocatalystsen_AU
dc.subjectElectrochemical energy conversionen_AU
dc.titleHigh-performance perovskite composite electrocatalysts enabled by controllable interface engineeringen_AU
dc.typeJournal Articleen_AU
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.63 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections