Tailored fabrication of defect-rich ion implanted CeO2-x nanoflakes for electrochemical sensing of H2O2

dc.contributor.authorLuo, YYen_AU
dc.contributor.authorZheng, XRen_AU
dc.contributor.authorVutukuri, CVen_AU
dc.contributor.authorHo, Nen_AU
dc.contributor.authorAtanacio, AJen_AU
dc.contributor.authorManohar, Men_AU
dc.contributor.authorArandiyan, Hen_AU
dc.contributor.authorWang, Yen_AU
dc.contributor.authorSorrell, CCen_AU
dc.contributor.authorMofarah, SSen_AU
dc.contributor.authorKoshy, Pen_AU
dc.date.accessioned2025-09-19T04:35:19Zen_AU
dc.date.available2025-09-19T04:35:19Zen_AU
dc.date.issued2023-05-24en_AU
dc.date.statistics2025-03-27en_AU
dc.description.abstractAs an alternative to H2O2 enzymatic biosensing devices, non-enzymatic CeO2-based biosensors have shown improved sensibility, robustness, and shelf lives. The redox capability in CeO2 and rapid switching between its oxidation states facilitate the formation of structural vacancy defects that serve as active sites. This work reports a novel approach for synthesis of defect-rich CeO2-x-based nanoflakes using a controllable electrochemical-based deposition at low temperatures (45°−65 °C) followed by low-energy ion implantation. Among the nanoflakes, Mo-implanted CeO2-x exhibited outstanding sensitivity of 4.96 × 10−5 A·mM−1 cm−2 within the linear range of 0.05–10 mM. Moreover, the ion-implanted samples yielded high sensing stability and electronic conductivity. The former was achieved through the multi-valence charge transfer between Ce and the implanted ions that caused the reduction of Gibbs free energies required for the formation/retention of the defects. The latter was due to the narrowing of the electronic bandgap of CeO2-x by creation of defect-induced midgap states. © 2023 The Author(s). Published on behalf of The Electrochemical Society by IOP Publishing Limited. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited.en_AU
dc.description.sponsorshipThis work was supported by the Australian Research Council (DP170104130). The authors acknowledge support from the Australian Government’s National Collaborative Research Infrastructure Strategy, NCRIS, for access to the low energy ion implantation facility in the Centre for Accelerator Science at ANSTO. Further, the authors acknowledge the subsidised use of faciltiies provided by the Mark Wainwright Analytical Centre, UNSW Sydney.en_AU
dc.identifier.articlenumber057519en_AU
dc.identifier.citationLuo, Y., Zheng, X., Vutukuri, C. V., Ho, N., Atanacio, A. J., Manohar, M., Arandiyan, H., Wang, Y., Sorrell, C. C., S. Mofarah, S., & Koshy, P. (2023). Tailored fabrication of defect-rich ion implanted CeO2-x nanoflakes for electrochemical sensing of H2O2. Journal of The Electrochemical Society, 170(5), 057519. doi:10.1149/1945-7111/acd41fen_AU
dc.identifier.issn0013-4651en_AU
dc.identifier.issn1945-7111en_AU
dc.identifier.issue5en_AU
dc.identifier.journaltitleJournal of The Electrochemical Societyen_AU
dc.identifier.urihttps://doi.org/10.1149/1945-7111/acd41fen_AU
dc.identifier.urihttps://apo.ansto.gov.au/handle/10238/16517en_AU
dc.identifier.volume170en_AU
dc.language.isoenen_AU
dc.publisherThe Electrochemical Societyen_AU
dc.subjectHydrogen peroxideen_AU
dc.subjectRedox potentialen_AU
dc.subjectDefectsen_AU
dc.subjectCerium oxidesen_AU
dc.subjectIon implantationen_AU
dc.subjectElectric conductivityen_AU
dc.subjectNanostructuresen_AU
dc.subjectDepositionen_AU
dc.subjectElectrochemistryen_AU
dc.subjectDefectsen_AU
dc.titleTailored fabrication of defect-rich ion implanted CeO2-x nanoflakes for electrochemical sensing of H2O2en_AU
dc.typeJournal Articleen_AU
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Luo_2023_J._Electrochem._Soc._170_057519.pdf
Size:
2.16 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.66 KB
Format:
Plain Text
Description:
Collections