Crystal-liquid duality driven ultralow two-channel thermal conductivity in α-MgAgSb

dc.contributor.authorLi, JYen_AU
dc.contributor.authorLi, XYen_AU
dc.contributor.authorZhang, YSen_AU
dc.contributor.authorZhu, Jen_AU
dc.contributor.authorZhao, Een_AU
dc.contributor.authorKofu, Men_AU
dc.contributor.authorNakajima, Ken_AU
dc.contributor.authorAvdeev, Men_AU
dc.contributor.authorLiu, PFen_AU
dc.contributor.authorSui, Jieheen_AU
dc.contributor.authorZhao, HSZen_AU
dc.contributor.authorWang, FWen_AU
dc.contributor.authorZhang, JRen_AU
dc.date.accessioned2024-02-23T03:31:56Zen_AU
dc.date.available2024-02-23T03:31:56Zen_AU
dc.date.issued2024-03en_AU
dc.date.statistics2024-02-23en_AU
dc.description.abstractThe desire for intrinsically low lattice thermal conductivity (κL) in thermoelectrics motivates numerous efforts on understanding the microscopic mechanisms of heat transport in solids. Here, based on theoretical calculations, we demonstrate that α-MgAgSb hosts low-energy localized phonon bands and avoided crossing of the rattler modes, which coincides with the inelastic neutron scattering result. Using the two-channel lattice dynamical approach, we find, besides the conventional contribution (∼70% at 300 K) from particlelike phonons propagating, the coherence contribution dominated by the wavelike tunneling of phonons accounts for ∼30% of the total κL at 300 K. By considering dual contributions, our calculated room-temperature κL of 0.64 W m−1 K−1 well agrees with the experimental value of 0.63 W m−1 K−1. More importantly, our computations give a nonstandard κL ∝ T−0.61 dependence, perfectly explaining the abnormal temperature-trend of ∼T−0.57 in experiment for α-MgAgSb. By molecular dynamics simulation, we reveal that the structure simultaneously has soft crystalline sublattices with the metavalent bonding and fluctuating liquid-like sublattices with thermally induced large amplitude vibrations. These diverse forms of chemical bonding arouse mixed part-crystal part-liquid state, scatter strongly heat-carrying phonons, and finally produce extremely low κL. The fundamental research from this study will accelerate the design of ultralow-κL materials for energy-conversion applications. © 2024 AIP Publishing LLCen_AU
dc.description.sponsorshipP.F.L. acknowledges the financial support from the Guangdong Basic and Applied Basic Research Foundation (Grant No. 2022A1515140030) and the National Natural Science Foundation of China (Grant Nos. 12104458). Y.S.Z. acknowledges the financial support from the program of Distinguished Expert of Taishan Scholar (No. tstp20221124). F.W.W. acknowledges the financial support from the Science Center of the National Natural Science Foundation of China (Grant Nos. 52088101). The neutron scattering experiment at the Materials and Life Science Experimental Facility (MLF), J-PARC was performed under user program (AMATERAS proposal no. 2018A0061). The calculations were performed at the CSNS Scientific Computing Platform of Institute of High Energy Physics of CAS and GBA Sub-center of National HEP Science Data Center (CSNS SC Platform of IHEP CAS & GBA Sub-Center of NHEPDC).en_AU
dc.identifier.citationLi, J., Li, X., Zhang, Y., Zhu, J., Zhao, E., Kofu, M., Nakajima, K., Avdeev, M., Liu, P.-F., Sui, J., Zhao, H., Wang, F., & Zhang, J. (2024). Crystal-liquid duality driven ultralow two-channel thermal conductivity in α-MgAgSb. Applied Physics Reviews, 11(1). doi:10.1063/5.0173680en_AU
dc.identifier.issn1931-9401en_AU
dc.identifier.issue1en_AU
dc.identifier.journaltitleApplied Physics Reviewsen_AU
dc.identifier.pagination011406-en_AU
dc.identifier.urihttp://dx.doi.org/10.1063/5.0173680en_AU
dc.identifier.urihttps://apo.ansto.gov.au/handle/10238/15420en_AU
dc.identifier.volume11en_AU
dc.languageEnglishen_AU
dc.language.isoenen_AU
dc.publisherAIP Publishingen_AU
dc.subjectCrystalsen_AU
dc.subjectThermal conductivityen_AU
dc.subjectCalculation methodsen_AU
dc.subjectAmbient temperatureen_AU
dc.subjectInelastic scatteringen_AU
dc.subjectPhononsen_AU
dc.subjectThermoelectric materialsen_AU
dc.titleCrystal-liquid duality driven ultralow two-channel thermal conductivity in α-MgAgSben_AU
dc.typeJournal Articleen_AU
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.66 KB
Format:
Plain Text
Description:
Collections