Critical role of the coupling between the octahedral rotation and a-site ionic displacements in PbZrO3-based antiferroelectric materials investigated by in situ neutron diffraction

dc.contributor.authorLu, Ten_AU
dc.contributor.authorStuder, AJen_AU
dc.contributor.authorYu, DHen_AU
dc.contributor.authorWithers, RLen_AU
dc.contributor.authorFeng, Yen_AU
dc.contributor.authorChen, Hen_AU
dc.contributor.authorIslam, SSen_AU
dc.contributor.authorXu, Zen_AU
dc.contributor.authorLiu, Yen_AU
dc.date.accessioned2021-01-08T01:09:55Zen_AU
dc.date.available2021-01-08T01:09:55Zen_AU
dc.date.issued2017-12-21en_AU
dc.date.statistics2021-01-07en_AU
dc.description.abstractThis in situ neutron-diffraction study on antiferroelectric (AFE) Pb0.99(Nb0.02Zr0.65Sn0.28Ti0.05)O3 polycrystalline materials describes systematic structural and associated preferred orientation changes as a function of applied electric field and temperature. It is found that the pristine AFE phase can be poled into the metastable ferroelectric (FE) phase at room temperature. At this stage, both AFE and FE phases consist of modes associated with octahedral rotation and A-site ionic displacements. The temperature-induced phase transition indicates that the octahedral rotation and ionic displacements are weakly coupled in the room-temperature FE phase and decoupled in the high-temperature FE phase. However, both temperature and E-field-induced phase transitions between the AFE and high-temperature FE phase demonstrate the critical role of coupling between octahedral rotation and A-site ionic displacements in stabilizing the AFE structure, which provides not only experimental evidence to support previous theoretical calculations, but also an insight into the design and development of AFE materials. Moreover, the associated preferred orientation evolution in both AFE and FE phases is studied during the phase transitions. It is found that the formation of the preferred orientation can be controlled to tune the samples’ FE and AFE properties. ©2017 American Physical Society - Open accessen_AU
dc.identifier.articlenumber214108en_AU
dc.identifier.citationLu. T., Studer, A. J., Yu, D., Withers, R. L., Feng, Y., Chen, H., Islam, S. S., Xu, Z., Liu, Y. (2017). Critical role of the coupling between the octahedral rotation and a-site ionic displacements in PbZrO3-based antiferroelectric materials investigated by in situ neutron diffraction. Physical Review B, 96(21), 214108. doi:10.1103/PhysRevB.96.214108en_AU
dc.identifier.issn0163-1829en_AU
dc.identifier.issue21en_AU
dc.identifier.journaltitlePhysical Review Ben_AU
dc.identifier.urihttps://doi.org/10.1103/PhysRevB.96.214108en_AU
dc.identifier.urihttps://apo.ansto.gov.au/dspace/handle/10238/10212en_AU
dc.identifier.volume96en_AU
dc.language.isoenen_AU
dc.publisherAmerican Physical Societyen_AU
dc.subjectAntiferroelectric materialsen_AU
dc.subjectCrystal structureen_AU
dc.subjectFerroelectric materialsen_AU
dc.subjectPolycrystalsen_AU
dc.subjectMaterialsen_AU
dc.subjectNeutron diffractionen_AU
dc.subjectAmbient temperatureen_AU
dc.titleCritical role of the coupling between the octahedral rotation and a-site ionic displacements in PbZrO3-based antiferroelectric materials investigated by in situ neutron diffractionen_AU
dc.typeJournal Articleen_AU
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PhysRevB.96.214108.pdf
Size:
2.11 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.63 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections