Characterisation of Fe distribution in the liquid–solid boundary of Al–Zn–Mg–Si alloy using synchrotron x-ray fluorescence microscopy
dc.contributor.author | Tian, H | en_AU |
dc.contributor.author | Qu, DD | en_AU |
dc.contributor.author | Setargew, N | en_AU |
dc.contributor.author | Parker, DJ | en_AU |
dc.contributor.author | Paterson, DJ | en_AU |
dc.contributor.author | StJohn, D | en_AU |
dc.contributor.author | Nogita, K | en_AU |
dc.date.accessioned | 2024-12-13T05:09:18Z | en_AU |
dc.date.available | 2024-12-13T05:09:18Z | en_AU |
dc.date.issued | 2024-07-17 | en_AU |
dc.date.statistics | 2024-11-27 | en_AU |
dc.description.abstract | Al–Zn–Mg–Si alloy coatings have been developed to inhibit the corrosion of cold-rolled steel sheets by offering galvanic and barrier protection to the substrate steel. It is known that Fe deposited from the steel strip modifies the microstructure of the alloy. We cast samples of Al–Zn–Mg–Si coating alloys containing 0.4 wt% Fe and directionally solidified them using a Bridgman furnace to quantify the effect of this Fe addition between 600 °C and 240 °C. By applying a temperature gradient, growth is encouraged, and by then quenching the sample in coolant, the microstructure may be frozen. These samples were analysed using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) to determine the morphological effects of the Fe distribution across the experimental temperature range. However, due to the sub 1 wt% concentration of Fe, synchrotron X-ray fluorescence microscopy (XFM) was applied to quantitatively confirm the Fe distribution. Directionally solidified samples were scanned at 7.05 keV and 18.5 keV using X-ray fluorescence at the Australian Synchrotron using the Maia array detector. It was found that a mass nucleation event of the Fe-based τ6 phase occurred at 495 °C following the nucleation of the primary α-Al phase as a result of a peritectic reaction with remaining liquid. © 2024 The Authors. Licensee MDPI, Basel, Switzerland. - Open Access | en_AU |
dc.description.sponsorship | This work is supported by the ARC Linkage Project (LP190100386). The synchrotron X-ray fluorescence spectroscopy was undertaken on the X-ray Fluorescence Beamline at the Australian Synchrotron, part of ANSTO, under grants AS213/XFM/17442 and AS222/XFM/18627. | en_AU |
dc.format.medium | Electronic | en_AU |
dc.identifier.citation | Tian, H., Qu, D., Setargew, N., Parker, D. J., Paterson, D. J., StJohn, D., & Nogita, K. (2024). Characterisation of Fe distribution in the liquid–solid boundary of Al–Zn–Mg–Si alloy using synchrotron x-ray fluorescence microscopy. Materials, 17(14), 3583. doi:10.3390/ma17143583 | en_AU |
dc.identifier.issn | 1996-1944 | en_AU |
dc.identifier.issue | 14 | en_AU |
dc.identifier.journaltitle | Materials | en_AU |
dc.identifier.pagination | 3583- | en_AU |
dc.identifier.uri | https://doi.org/10.3390/ma17143583 | en_AU |
dc.identifier.uri | https://apo.ansto.gov.au/handle/10238/15829 | en_AU |
dc.identifier.volume | 17 | en_AU |
dc.language | English | en_AU |
dc.language.iso | en | en_AU |
dc.publisher | MDPI | en_AU |
dc.subject | Iron | en_AU |
dc.subject | Distribution | en_AU |
dc.subject | Liquids | en_AU |
dc.subject | Solids | en_AU |
dc.subject | Aluminium | en_AU |
dc.subject | Zinc | en_AU |
dc.subject | Magnesium | en_AU |
dc.subject | Silicon | en_AU |
dc.subject | Alloys | en_AU |
dc.subject | Synchrotrons | en_AU |
dc.subject | Fluorescence | en_AU |
dc.subject | Microscopy | en_AU |
dc.title | Characterisation of Fe distribution in the liquid–solid boundary of Al–Zn–Mg–Si alloy using synchrotron x-ray fluorescence microscopy | en_AU |
dc.type | Journal Article | en_AU |
dcterms.dateAccepted | 2024-07-17 | en_AU |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Characterisation of Fe Distribution in the Liquid-Solid Boundary of Al-Zn-Mg-Si Alloy Using Synchrotron X-ray Fluorescence M.pdf
- Size:
- 18.77 MB
- Format:
- Adobe Portable Document Format
- Description:
- Published version
License bundle
1 - 1 of 1