Characterisation of Fe distribution in the liquid–solid boundary of Al–Zn–Mg–Si alloy using synchrotron x-ray fluorescence microscopy

dc.contributor.authorTian, Hen_AU
dc.contributor.authorQu, DDen_AU
dc.contributor.authorSetargew, Nen_AU
dc.contributor.authorParker, DJen_AU
dc.contributor.authorPaterson, DJen_AU
dc.contributor.authorStJohn, Den_AU
dc.contributor.authorNogita, Ken_AU
dc.date.accessioned2024-12-13T05:09:18Zen_AU
dc.date.available2024-12-13T05:09:18Zen_AU
dc.date.issued2024-07-17en_AU
dc.date.statistics2024-11-27en_AU
dc.description.abstractAl–Zn–Mg–Si alloy coatings have been developed to inhibit the corrosion of cold-rolled steel sheets by offering galvanic and barrier protection to the substrate steel. It is known that Fe deposited from the steel strip modifies the microstructure of the alloy. We cast samples of Al–Zn–Mg–Si coating alloys containing 0.4 wt% Fe and directionally solidified them using a Bridgman furnace to quantify the effect of this Fe addition between 600 °C and 240 °C. By applying a temperature gradient, growth is encouraged, and by then quenching the sample in coolant, the microstructure may be frozen. These samples were analysed using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) to determine the morphological effects of the Fe distribution across the experimental temperature range. However, due to the sub 1 wt% concentration of Fe, synchrotron X-ray fluorescence microscopy (XFM) was applied to quantitatively confirm the Fe distribution. Directionally solidified samples were scanned at 7.05 keV and 18.5 keV using X-ray fluorescence at the Australian Synchrotron using the Maia array detector. It was found that a mass nucleation event of the Fe-based τ6 phase occurred at 495 °C following the nucleation of the primary α-Al phase as a result of a peritectic reaction with remaining liquid. © 2024 The Authors. Licensee MDPI, Basel, Switzerland. - Open Accessen_AU
dc.description.sponsorshipThis work is supported by the ARC Linkage Project (LP190100386). The synchrotron X-ray fluorescence spectroscopy was undertaken on the X-ray Fluorescence Beamline at the Australian Synchrotron, part of ANSTO, under grants AS213/XFM/17442 and AS222/XFM/18627.en_AU
dc.format.mediumElectronicen_AU
dc.identifier.citationTian, H., Qu, D., Setargew, N., Parker, D. J., Paterson, D. J., StJohn, D., & Nogita, K. (2024). Characterisation of Fe distribution in the liquid–solid boundary of Al–Zn–Mg–Si alloy using synchrotron x-ray fluorescence microscopy. Materials, 17(14), 3583. doi:10.3390/ma17143583en_AU
dc.identifier.issn1996-1944en_AU
dc.identifier.issue14en_AU
dc.identifier.journaltitleMaterialsen_AU
dc.identifier.pagination3583-en_AU
dc.identifier.urihttps://doi.org/10.3390/ma17143583en_AU
dc.identifier.urihttps://apo.ansto.gov.au/handle/10238/15829en_AU
dc.identifier.volume17en_AU
dc.languageEnglishen_AU
dc.language.isoenen_AU
dc.publisherMDPIen_AU
dc.subjectIronen_AU
dc.subjectDistributionen_AU
dc.subjectLiquidsen_AU
dc.subjectSolidsen_AU
dc.subjectAluminiumen_AU
dc.subjectZincen_AU
dc.subjectMagnesiumen_AU
dc.subjectSiliconen_AU
dc.subjectAlloysen_AU
dc.subjectSynchrotronsen_AU
dc.subjectFluorescenceen_AU
dc.subjectMicroscopyen_AU
dc.titleCharacterisation of Fe distribution in the liquid–solid boundary of Al–Zn–Mg–Si alloy using synchrotron x-ray fluorescence microscopyen_AU
dc.typeJournal Articleen_AU
dcterms.dateAccepted2024-07-17en_AU
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Characterisation of Fe Distribution in the Liquid-Solid Boundary of Al-Zn-Mg-Si Alloy Using Synchrotron X-ray Fluorescence M.pdf
Size:
18.77 MB
Format:
Adobe Portable Document Format
Description:
Published version
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.66 KB
Format:
Plain Text
Description:
Collections