Dopant distribution in co-free high-energy layered cathode materials

dc.contributor.authorMu, Len_AU
dc.contributor.authorZhang, Ren_AU
dc.contributor.authorKan, WHen_AU
dc.contributor.authorZhang, Yen_AU
dc.contributor.authorLi, LXen_AU
dc.contributor.authorKuai, Cen_AU
dc.contributor.authorZydlewski, Ben_AU
dc.contributor.authorRahman, MMen_AU
dc.contributor.authorSun, CJen_AU
dc.contributor.authorSainio, Sen_AU
dc.contributor.authorAvdeev, Men_AU
dc.contributor.authorNordlund, Den_AU
dc.contributor.authorXin, HLen_AU
dc.contributor.authorLin, Fen_AU
dc.date.accessioned2021-01-28T05:29:36Zen_AU
dc.date.available2021-01-28T05:29:36Zen_AU
dc.date.issued2019-11-21en_AU
dc.date.statistics2021-01-12en_AU
dc.description.abstractThe practical implementation of Co-free, LiNiO2-derived cathodes has been prohibited by their poor cycle life and thermal stability, resulting from the structural instability, phase transformations, reactive surfaces, and chemomechanical breakdown. With the hierarchical distribution of Mg/Ti dual dopants in LiNiO2, we report a Co-free layered oxide that exhibits enhanced bulk and surface stability. Ti shows a gradient distribution and is enriched at the surface, whereas Mg distributes homogeneously throughout the primary particles. The resulting Mg/Ti codoped LiNiO2 delivers a material-level specific energy of ∼780 W h/kg at C/10 with 96% retention after 50 cycles. The specific energy reaches ∼680 W h/kg at 1C with 77% retention after 300 cycles. Furthermore, the Mg/Ti dual dopants improve the rate capability, thermal stability, and self-discharge resistance of LiNiO2. Our synchrotron X-ray, electron, and electrochemical diagnostics reveal that the Mg/Ti dual dopants mitigate phase transformations, reduce nickel dissolution, and stabilize the cathode–electrolyte interface, thus leading to the favorable battery performance in lithium metal and graphite cells. The present study suggests that engineering the dopant distribution in cathodes may provide an effective path toward lower cost, safer, and higher energy density Co-free lithium batteries. © 2019 American Chemical Societyen_AU
dc.identifier.citationMu, L., Zhang, R., Kan, W. H., Zhang, Y., Li, L., Kuai, C., Zydlewski, B., Rahman, M. M., Sun, C.-J., Sainio, S., Avdeev, M., Nordlund, D., Xin, H. L., & Lin, F. (2019) Dopant distribution in co-free high-energy layered cathode materials. Chemistry of Materials 31(23), 9769–9776. doi:10.1021/acs.chemmater.9b03603en_AU
dc.identifier.issn1520-5002en_AU
dc.identifier.issue23en_AU
dc.identifier.journaltitleChemistry of Materialsen_AU
dc.identifier.pagination9769-9776en_AU
dc.identifier.urihttps://doi.org/10.1021/acs.chemmater.9b03603en_AU
dc.identifier.urihttps://apo.ansto.gov.au/dspace/handle/10238/10271en_AU
dc.identifier.volume31en_AU
dc.language.isoenen_AU
dc.publisherAmerican Chemical Societyen_AU
dc.subjectPhase transformationsen_AU
dc.subjectElectrochemical cellsen_AU
dc.subjectSolutionsen_AU
dc.subjectElectrodesen_AU
dc.subjectElectric batteriesen_AU
dc.subjectOxidesen_AU
dc.titleDopant distribution in co-free high-energy layered cathode materialsen_AU
dc.typeJournal Articleen_AU
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.63 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections