Crystal chemistry and phase manipulation in Synroc

dc.contributor.authorVance, ERen_AU
dc.contributor.authorMoricca, SAen_AU
dc.contributor.authorThorogood, GJen_AU
dc.contributor.authorLumpkin, GRen_AU
dc.date.accessioned2025-09-01T06:58:36Zen_AU
dc.date.available2025-09-01T06:58:36Zen_AU
dc.date.issued1990-08en_AU
dc.date.statistics2025-08-01en_AU
dc.descriptionPhysical copy held by ANSTO Library at DDC: 620.14/9 Conference name also called "2nd International Ceramic Conference and Exhibition" on preface.en_AU
dc.description.abstractSynroc is a multi-phase titanate ceramic designed for geological immobilisation of radioactive waste produced reprocessing by nuclear fuel from power reactors [1]. The main crystalline phases are hollandite, perovskite, zirconolite, and reduced titanium oxide. The compositions of these phases and the nuclides they can incorporate in solid solution are shown in Table 1. The main (Synroc-C) formulation is designed for Purex reprocessing waste and the standard composition is (wt%) : AI203(4.3); BaO(4.4); CaO(8.8); ZrO2(5.6); TiO2(57.9); waste oxides (20). The loading of high-level waste (HLW) oxides can be varied if desired, but probably cannot exceed a value of 30-35% [2]. Several variants of this composition have been fomulated at the laboratory scale, with Synroc-D, E and F being directed towards Savanah River (U.S.A.) military waste, encapsulation of high-level nuclear reprocessing waste and unreprocessed spent fuel respectively [3-5]. The present work is also aimed at modifying the Synroc-C composition in the following respects (a) significant reduction of the various fraction of perovskite phase in Synroc-C (b) incorporation of process chemicals and (c) incorporation of Al-rich and actinide-rich wastes.en_AU
dc.identifier.citationVance, E. R., Moricca, S., Thorogood, G. J., & Lumpkin, G. R. (1990). Crystal chemistry and phase manipulation in Synroc. Paper presented to the International Ceramic Conference (AUSTCERAM 90: ceramics technology - sharing the knowledge), Perth, Western Australia, 26-31 August 1990. Key Engineering Materials, 48-50, 717-721.en_AU
dc.identifier.conferenceenddate1990-08-31en_AU
dc.identifier.conferencenameInternational Ceramic Conference (AUSTCERAM 90: ceramics technology - sharing the knowledge)en_AU
dc.identifier.conferenceplacePerth, Western Australiaen_AU
dc.identifier.conferencestartdate1990-08-26en_AU
dc.identifier.issn0252-1059en_AU
dc.identifier.issue2en_AU
dc.identifier.journaltitleKey Engineering Materialsen_AU
dc.identifier.pagination717-721en_AU
dc.identifier.placeofpublicationAedermannsdorf, Switzerlanden_AU
dc.identifier.urihttps://apo.ansto.gov.au/handle/10238/16428en_AU
dc.identifier.volume48-50en_AU
dc.language.isoenen_AU
dc.publisherTrans Tech Publicationsen_AU
dc.subjectSynroc processen_AU
dc.subjectSynthetic rocksen_AU
dc.subjectTitanatesen_AU
dc.subjectGeologic depositsen_AU
dc.subjectRadioactive waste disposalen_AU
dc.subjectHollanditeen_AU
dc.subjectPerovskiteen_AU
dc.subjectZirconoliteen_AU
dc.subjectTitanium oxidesen_AU
dc.subjectChemical compositionen_AU
dc.subjectWastesen_AU
dc.subjectOxidesen_AU
dc.subjectSavannah Riveren_AU
dc.subjectActinidesen_AU
dc.titleCrystal chemistry and phase manipulation in Synrocen_AU
dc.typeConference Paperen_AU
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.63 KB
Format:
Item-specific license agreed upon to submission
Description: