Ultralow loss and high tunability in a non‐perovskite relaxor ferroelectric
dc.contributor.author | Li, R | en_AU |
dc.contributor.author | Xu, D | en_AU |
dc.contributor.author | Avdeev, M | en_AU |
dc.contributor.author | Zhang, L | en_AU |
dc.contributor.author | Chen, XF | en_AU |
dc.contributor.author | Gou, GY | en_AU |
dc.contributor.author | Wang, D | en_AU |
dc.contributor.author | Liu, WF | en_AU |
dc.contributor.author | Zhou, D | en_AU |
dc.date.accessioned | 2024-08-21T23:43:48Z | en_AU |
dc.date.available | 2024-08-21T23:43:48Z | en_AU |
dc.date.issued | 2022-11-10 | en_AU |
dc.date.statistics | 2024-08-22 | en_AU |
dc.description.abstract | Dielectric ceramics are fundamental for electronic systems, including energy storages, microwave applications, ultrasonics, and sensors. Relaxor ferroelectrics show superb performance among dielectrics due to their high efficiency and energy density by the nature of nanodomains. Here, a novel non‐perovskite relaxor ferroelectric, Bi6Ti5WO22, with ultralow loss, ≈10−3, highly tunable permittivity, ≈2200 at room temperature with 40% tunability and the superparaelectric region at room temperature is presented. The actual crystal structure and the nanodomains of Bi6Ti5WO22 are demonstrat Various‐temperature neutron powder diffraction and in situ high‐resolution transmission‐electron‐microscopy illustrate the twinning effect, subtle structure change and micro‐strain in the material influenced by temperature, manifesting the actual crystal structure of Bi6Ti5WO22. Compared with dielectric loss of BaTiO3‐based dielectric tunable materials, the loss of Bi6Ti5WO22 is more than an order of magnitude lower, which makes it exhibit a figure of merit (≈240), much higher than that of conventional dielectric tunable materials (< 100), endorse the material great potential for direct applications. The present research offers a strategy for discovering novel relaxor ferroelectrics and a highly desirable material for fabricating energy storage capacitors, microwave dielectrics, and ultrasonics. © 1999-2024 John Wiley & Sons, Inc | en_AU |
dc.description.sponsorship | R. L. and D. X. contributed equally to this work. D. Z. thanks the National Key R&D Program of China (2021YFB3800602) the National Natural Science Foundation of China (51972260, 52072295, 62175056), the International Cooperation Project of Shaanxi Province (2021KWZ-10), the Fundamental Research Funds for the Central University, the 111 Project of China (B14040), Zhejiang Provincial Science and Technology Program under Grant (LGG20F0100007). We thank the International Center for Dielectric Research (ICDR), Xi'an Jiaotong University, Xi'an, China. | en_AU |
dc.identifier.articlenumber | 2210709 | en_AU |
dc.identifier.citation | Li, R., Xu, D., Avdeev, M., Zhang, L., Chen, X., Gou, G., Wang, D., Liu, W., & Zhou, D. (2023). Ultralow loss and high tunability in a non‐perovskite relaxor ferroelectric. Advanced Functional Materials, 33(3), 2210709. doi:10.1002/adfm.202210709 | en_AU |
dc.identifier.issn | 1616-301X | en_AU |
dc.identifier.issn | 1616-3028 | en_AU |
dc.identifier.issue | 3 | en_AU |
dc.identifier.journaltitle | Advanced Functional Materials | en_AU |
dc.identifier.uri | http://dx.doi.org/10.1002/adfm.202210709 | en_AU |
dc.identifier.uri | https://apo.ansto.gov.au/handle/10238/15650 | en_AU |
dc.identifier.volume | 33 | en_AU |
dc.language | English | en_AU |
dc.language.iso | en | en_AU |
dc.publisher | Wiley | en_AU |
dc.subject | Perovskite | en_AU |
dc.subject | Ferroelectric materials | en_AU |
dc.subject | Ceramics | en_AU |
dc.subject | Energy storage | en_AU |
dc.subject | Sensors | en_AU |
dc.subject | Ambient temperature | en_AU |
dc.subject | Diffraction | en_AU |
dc.subject | Crystal structure | en_AU |
dc.subject | Materials | en_AU |
dc.title | Ultralow loss and high tunability in a non‐perovskite relaxor ferroelectric | en_AU |
dc.type | Journal Article | en_AU |
Files
License bundle
1 - 1 of 1