Ultralow loss and high tunability in a non‐perovskite relaxor ferroelectric

dc.contributor.authorLi, Ren_AU
dc.contributor.authorXu, Den_AU
dc.contributor.authorAvdeev, Men_AU
dc.contributor.authorZhang, Len_AU
dc.contributor.authorChen, XFen_AU
dc.contributor.authorGou, GYen_AU
dc.contributor.authorWang, Den_AU
dc.contributor.authorLiu, WFen_AU
dc.contributor.authorZhou, Den_AU
dc.date.accessioned2024-08-21T23:43:48Zen_AU
dc.date.available2024-08-21T23:43:48Zen_AU
dc.date.issued2022-11-10en_AU
dc.date.statistics2024-08-22en_AU
dc.description.abstractDielectric ceramics are fundamental for electronic systems, including energy storages, microwave applications, ultrasonics, and sensors. Relaxor ferroelectrics show superb performance among dielectrics due to their high efficiency and energy density by the nature of nanodomains. Here, a novel non‐perovskite relaxor ferroelectric, Bi6Ti5WO22, with ultralow loss, ≈10−3, highly tunable permittivity, ≈2200 at room temperature with 40% tunability and the superparaelectric region at room temperature is presented. The actual crystal structure and the nanodomains of Bi6Ti5WO22 are demonstrat Various‐temperature neutron powder diffraction and in situ high‐resolution transmission‐electron‐microscopy illustrate the twinning effect, subtle structure change and micro‐strain in the material influenced by temperature, manifesting the actual crystal structure of Bi6Ti5WO22. Compared with dielectric loss of BaTiO3‐based dielectric tunable materials, the loss of Bi6Ti5WO22 is more than an order of magnitude lower, which makes it exhibit a figure of merit (≈240), much higher than that of conventional dielectric tunable materials (< 100), endorse the material great potential for direct applications. The present research offers a strategy for discovering novel relaxor ferroelectrics and a highly desirable material for fabricating energy storage capacitors, microwave dielectrics, and ultrasonics. © 1999-2024 John Wiley & Sons, Incen_AU
dc.description.sponsorshipR. L. and D. X. contributed equally to this work. D. Z. thanks the National Key R&D Program of China (2021YFB3800602) the National Natural Science Foundation of China (51972260, 52072295, 62175056), the International Cooperation Project of Shaanxi Province (2021KWZ-10), the Fundamental Research Funds for the Central University, the 111 Project of China (B14040), Zhejiang Provincial Science and Technology Program under Grant (LGG20F0100007). We thank the International Center for Dielectric Research (ICDR), Xi'an Jiaotong University, Xi'an, China.en_AU
dc.identifier.articlenumber2210709en_AU
dc.identifier.citationLi, R., Xu, D., Avdeev, M., Zhang, L., Chen, X., Gou, G., Wang, D., Liu, W., & Zhou, D. (2023). Ultralow loss and high tunability in a non‐perovskite relaxor ferroelectric. Advanced Functional Materials, 33(3), 2210709. doi:10.1002/adfm.202210709en_AU
dc.identifier.issn1616-301Xen_AU
dc.identifier.issn1616-3028en_AU
dc.identifier.issue3en_AU
dc.identifier.journaltitleAdvanced Functional Materialsen_AU
dc.identifier.urihttp://dx.doi.org/10.1002/adfm.202210709en_AU
dc.identifier.urihttps://apo.ansto.gov.au/handle/10238/15650en_AU
dc.identifier.volume33en_AU
dc.languageEnglishen_AU
dc.language.isoenen_AU
dc.publisherWileyen_AU
dc.subjectPerovskiteen_AU
dc.subjectFerroelectric materialsen_AU
dc.subjectCeramicsen_AU
dc.subjectEnergy storageen_AU
dc.subjectSensorsen_AU
dc.subjectAmbient temperatureen_AU
dc.subjectDiffractionen_AU
dc.subjectCrystal structureen_AU
dc.subjectMaterialsen_AU
dc.titleUltralow loss and high tunability in a non‐perovskite relaxor ferroelectricen_AU
dc.typeJournal Articleen_AU
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.66 KB
Format:
Plain Text
Description:
Collections