Simple synchronous dual-modification strategy with Zr4+ doping and CeO2 nanowelding to stabilize layered Ni-rich cathode materials

dc.contributor.authorLiu, JKen_AU
dc.contributor.authorYin, ZWen_AU
dc.contributor.authorZheng, WCen_AU
dc.contributor.authorZhang, Jen_AU
dc.contributor.authorDeng, SSen_AU
dc.contributor.authorWang, Zen_AU
dc.contributor.authorDeng, Lien_AU
dc.contributor.authorXie, SJen_AU
dc.contributor.authorLiu, ZKen_AU
dc.contributor.authorAvdeev, Men_AU
dc.contributor.authorQu, Fen_AU
dc.contributor.authorKan, WHen_AU
dc.contributor.authorZhou, Yen_AU
dc.contributor.authorLi, JTen_AU
dc.date.accessioned2024-02-29T05:43:56Zen_AU
dc.date.available2024-02-29T05:43:56Zen_AU
dc.date.issued2023-05-22en_AU
dc.date.statistics2024-02-29en_AU
dc.description.abstractA Ni-rich layered oxide, one promising cathode for lithium-ion batteries (LIBs), exhibits the advantages of low cost and high capacity but suffers from rapid capacity loss due to bulk structural instability and surface side reactions. Herein, a simple synchronous dual-modification strategy with Zr4+doping and CeO2nanowelding is proposed to address such issues. Utilizing the migration energy difference of Zr and Ce ions in layered structures, one-step high-temperature sintering of LiNi0.8Co0.1Mn0.1O2particles with Zr and Ce nitrate distributions enables simultaneous doping of Zr ions in the bulk and CeO2surface modification. Therein, Zr ions in the bulk occupying the Li sites can improve the Li+diffusion rate and stabilize the crystal structure, while CeO2on the surface provides nanowelding between the grain boundaries and resistance to electrolyte erosion. Theoretical calculations and a series of structure/composition characterizations (i.e., neutron scattering, in situ X-ray diffraction, etc.) validated the proposed strategy and its role in stabilizing the Ni-rich cathodes. The synergistic effect of Zr4+doping and CeO2nanowelding enables an impressive initial capacity of 187.2 mAh g-1(2.7-4.3 V vs Li/Li+) with 86.1% retention after 200 cycles at 1 C and rate capabilities of 146.6 and 127.3 mAh g-1at 5 and 10 C, respectively. Upon increasing the testing temperature to 60 °C, the dual-modified Ni-rich cathode exhibits an initial discharge capacity of 203.5 mAh g-1with a good retention of 80.8% after 100 cycles at 0.5 C. The present strategy utilizing the migration energy difference of metal ions to achieve synchronous bulk doping and surface modification will offer fresh insights to stabilize layered cathode materials for LIBs, which can be widely used in other kinds of batteries with various cathode materials. © American Chemical Societyen_AU
dc.description.sponsorshipThis work was supported by the National Natural Science Foundation of China (Nos. 22279107, 22288102) and National Key Research and Development Program of China (2022YFB4002103), F.Q. acknowledges the support of the Natural Science Basis Research Plan in Shaanxi Province of China (Grant No. 2021JQ-383).en_AU
dc.identifier.citationLiu, J.-K., Yin, Z.-W., Zheng, W.-C., Zhang, J., Deng, S.-S., Wang, Z., Deng, L., Xie, S.-J., Liu, Z.-K., Avdeev, M., Qu, F., Kan, W. H., Zhou, Y., & Li, J.-T. (2023). Simple synchronous dual-modification strategy with Zr4+ doping and CeO2 nanowelding to stabilize layered Ni-rich cathode materials. ACS Applied Energy Materials, 6(10), 5473-5485. doi:10.1021/acsaem.3c00565en_AU
dc.identifier.issn2574-0962en_AU
dc.identifier.issue10en_AU
dc.identifier.journaltitleACS Applied Energy Materialsen_AU
dc.identifier.pagination5473-5485en_AU
dc.identifier.urihttp://dx.doi.org/10.1021/acsaem.3c00565en_AU
dc.identifier.urihttps://apo.ansto.gov.au/handle/10238/15503en_AU
dc.identifier.volume6en_AU
dc.languageEnglishen_AU
dc.language.isoenen_AU
dc.publisherAmerican Chemical Societyen_AU
dc.titleSimple synchronous dual-modification strategy with Zr4+ doping and CeO2 nanowelding to stabilize layered Ni-rich cathode materialsen_AU
dc.typeJournal Articleen_AU
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.66 KB
Format:
Plain Text
Description:
Collections