Detection and discrimination of neutron capture events for NCEPT dose quantification

dc.contributor.authorChacon, Aen_AU
dc.contributor.authorKielly, Men_AU
dc.contributor.authorRutherford, Hen_AU
dc.contributor.authorFranklin, DRen_AU
dc.contributor.authorCaracciolo, Aen_AU
dc.contributor.authorBuonanno, Len_AU
dc.contributor.authorD'Adda, Ien_AU
dc.contributor.authorRosenfeld, ABen_AU
dc.contributor.authorGuatelli, Sen_AU
dc.contributor.authorCarminati, Men_AU
dc.contributor.authorFiorini, Cen_AU
dc.contributor.authorSafavi-Naeini, Men_AU
dc.date.accessioned2022-05-04T01:49:05Zen_AU
dc.date.available2022-05-04T01:49:05Zen_AU
dc.date.issued2022-04-07en_AU
dc.date.statistics2022-04-22en_AU
dc.description.abstractNeutron Capture Enhanced Particle Therapy (NCEPT) boosts the effectiveness of particle therapy by capturing thermal neutrons produced by beam-target nuclear interactions in and around the treatment site, using tumour-specific 10B or 157Gd-based neutron capture agents. Neutron captures release high-LET secondary particles together with gamma photons with energies of 478 keV or one of several energies up to 7.94 MeV, for 10B and 157Gd, respectively. A key requirement for NCEPT’s translation is the development of in vivo dosimetry techniques which can measure both the direct ion dose and the dose due to neutron capture. In this work, we report signatures which can be used to discriminate between photons resulting from neutron capture and those originating from other processes. A Geant4 Monte Carlo simulation study into timing and energy thresholds for discrimination of prompt gamma photons resulting from thermal neutron capture during NCEPT was conducted. Three simulated 300×300×300 mm3 cubic PMMA targets were irradiated by 4He or 12C ion beams with a spread out Bragg peak (SOBP) depth range of 60 mm; one target is homogeneous while the others include 10×10×10 mm3 neutron capture inserts (NCIs) of pure 10B or 157Gd located at the distal edge of the SOBP. The arrival times of photons and neutrons entering a simulated 50×50×50 mm3 ideal detector were recorded. A temporal mask of 50–60 ns was found to be optimal for maximising the discrimination of the photons resulting from the neutron capture by boron and gadolinium. A range of candidate detector and thermal neutron shielding materials were simulated, and detections meeting the proposed acceptance criteria (i.e. falling within the target energy window and arriving 60 ns post beam-off) were classified as true or false positives, depending on their origin. The ratio of true/false positives (RTF) was calculated; for targets with 10B and 157Gd NCIs, the detector materials which resulted in the highest RTF were cadmium-shielded CdTe and boron-shielded LSO, respectively. The optimal irradiation period for both carbon and helium ions was 1 µs for the 10B NCI and 1 ms for the 157Gd NCI. © The Authors, Creative Commons Attribution 4.0 International Licence.en_AU
dc.description.sponsorshipThis research/project was undertaken with the support of the high performance computing resources at the National Computational Infrastructure (NCI), which is supported by the Australian Government and the Tesla high performance computing cluster at ANSTO. The authors wish to acknowledge the support of the ANSTO Graduate Institute Industry Fellowship, the Australia Government Research Training Program Scholarship and the Australian Institute of Nuclear Science and Engineering (AINSE) Honours Scholarship.en_AU
dc.identifier.articlenumber5863en_AU
dc.identifier.citationChacon, A., Kielly, M., Rutherford, H., Franklin, D. C., Caracciolo, A., Buonanno, L., D'Adda, I., Rosenfeld, A., Guatelli, S., Carminati, M., Fiorini, F., & Safavi-Naeini, M. (2022). Detection and discrimination of neutron capture events for NCEPT dose quantification. Scientific Reports, 12, 5863. doi:10.1038/s41598-022-09676-xen_AU
dc.identifier.issn2045-2322en_AU
dc.identifier.journaltitleScientific Reportsen_AU
dc.identifier.urihttps://doi.org/10.1038/s41598-022-09676-xen_AU
dc.identifier.urihttps://apo.ansto.gov.au/dspace/handle/10238/13099en_AU
dc.identifier.volume12en_AU
dc.language.isoenen_AU
dc.publisherSpringer Nature Limiteden_AU
dc.subjectNeutron capture therapyen_AU
dc.subjectRadiotherapyen_AU
dc.subjectMeV rangeen_AU
dc.subjectNeutron therapyen_AU
dc.subjectNeoplasmsen_AU
dc.subjectMonte Carlo Methoden_AU
dc.subjectThreshold doseen_AU
dc.subjectPhotonsen_AU
dc.subjectNeutronsen_AU
dc.subjectShieldingen_AU
dc.titleDetection and discrimination of neutron capture events for NCEPT dose quantificationen_AU
dc.typeJournal Articleen_AU
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s41598-022-09676-x.pdf
Size:
2.42 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.63 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections