Does the boson peak survive in an ultrathin oxide glass?

dc.contributor.authorCortie, DLen_AU
dc.contributor.authorCyster, MJen_AU
dc.contributor.authorSmith, JSen_AU
dc.contributor.authorIles, GNen_AU
dc.contributor.authorWang, XLen_AU
dc.contributor.authorMitchell, DRGen_AU
dc.contributor.authorMole, RAen_AU
dc.contributor.authorde Souza, NRen_AU
dc.contributor.authorYu, DHen_AU
dc.contributor.authorCole, JHen_AU
dc.date.accessioned2023-11-03T04:14:08Zen_AU
dc.date.available2023-11-03T04:14:08Zen_AU
dc.date.issued2019-07-29en_AU
dc.date.statistics2023-10-30en_AU
dc.description.abstractBulk glasses exhibit extra vibrational modes at low energies, known as the boson peak. The microscopic dynamics in nanoscale alumina impact the performance of qubits and other superconducting devices, however the existence of the boson peak in these glasses has not been previously measured. Here we report neutron spectroscopy on Al/Al2O3−x nanoparticles consisting of spherical metallic cores from 20 to 1000 nm surrounded by a 3.5 nm thick alumina glass. An intense low-energy peak is observed at ωBP = 2.8 ± 0.6 meV for highly oxidised particles, concurrent with an excess in the density of states. The intensity of the peak scales inversely with particle size and oxide fraction indicating a surface origin, and is red-shifted by 3 meV with respect to the van-Hove singularity of γ-phase Al2O3−x nanocrystals. Molecular dynamics simulations of α-Al2O3−x, γ-Al2O3−x and a-Al2O3−x show that the observed boson peak is a signature of the ultrathin glass surface, and the frequency is softened compared to that of the hypothetical bulk glass.en_AU
dc.description.sponsorshipJC and DC acknowledge the support of the Australian Research Council(ARC) via DP140100375, DE180100314. This work was partly supported by the ARC Centre for Excellence in Future Low Energy Electronics (CE170100039) and the Centre for Excellence in Exciton Science (CE170100026). High performance computing performed on the National Computational Infrastructure (NCI). This research used the JEOL JEM-ARM200F funded by the ARC LIEF grant (LE120100104). Neutron spectroscopy was performed at the Australian Centre for Neutron Scattering (P7437).en_AU
dc.identifier.articlenumber1907.12200v1en_AU
dc.identifier.citationCortie, D. L., Cyster, M. J., Smith, J. S., Iles, G. N., Wang, X. L., Mitchell, D. R. G., ... & Cole, J. H. (2019). Does the boson peak survive in an ultrathin oxide glass?. Arxiv Condensed Matter, arXiv:1907.12200v1. doi:10.48550/arXiv.1907.12200en_AU
dc.identifier.journaltitlearXiv Condensed Matteren_AU
dc.identifier.urihttps://apo.ansto.gov.au/handle/10238/15170en_AU
dc.language.isoenen_AU
dc.publisherarXiv.orgen_AU
dc.relation.urihttps://doi.org/10.48550/arXiv.1907.12200en_AU
dc.subjectBosonsen_AU
dc.subjectGlassen_AU
dc.subjectVibrational statesen_AU
dc.subjectDynamicsen_AU
dc.subjectQubitsen_AU
dc.subjectNeutron spectroscopyen_AU
dc.subjectNanoparticlesen_AU
dc.titleDoes the boson peak survive in an ultrathin oxide glass?en_AU
dc.typeJournal Articleen_AU
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
1907.12200.pdf
Size:
4.45 MB
Format:
Adobe Portable Document Format
Description:
Loading...
Thumbnail Image
Name:
1907.12200v1.pdf
Size:
4.45 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.63 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections