Ultrawide temperature range super-invar behavior of R2(Fe, Co)17 materials (R = rare earth)

No Thumbnail Available
Date
2021-07-30
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Abstract
Super Invar (SIV), i.e., zero thermal expansion of metallic materials underpinned by magnetic ordering, is of great practical merit for a wide range of high precision engineering. However, the relatively narrow temperature window of SIV in most materials restricts its potential applications in many critical fields. Here, we demonstrate the controlled design of thermal expansion in a family of R2(Fe,Co)17 materials (R=rare Earth). We find that adjusting the Fe-Co content tunes the thermal expansion behavior and its optimization leads to a record-wide SIV with good cyclic stability from 3–461 K, almost twice the range of currently known SIV. In situ neutron diffraction, Mössbauer spectra and first-principles calculations reveal the 3d bonding state transition of the Fe-sublattice favors extra lattice stress upon magnetic ordering. On the other hand, Co content induces a dramatic enhancement of the internal molecular field, which can be manipulated to achieve “ultrawide” SIV over broad temperature, composition and magnetic field windows. These findings pave the way for exploiting thermal-expansion-control engineering and related functional materials. © 2021 American Physical Society
Description
Keywords
Thermal expansion, Polycrystals, Ferrimagnetism, Neutron diffraction, Rare earths, Iron, Cobalt
Citation
Cao, Y., Lin, K., Khmelevskyi, S., Avdeev, M., Taddei, K. M., Zhang, Q., Huang, Q., Li, Q., Kato, K., Tang, C. C., Gibbs, A., Wang, C.-W., Deng, J., Chen, J., Zhang, H., & Xing, X. (2021). Ultrawide temperature range super-invar behavior of R2(Fe, Co)17 materials (R = rare earth). Physical Review Letters, 127(5), 055501. doi:10.1103/PhysRevLett.127.055501
Collections