Monitoring the phase evolution in LiCoO2 electrodes during battery cycles using in-situ neutron diffraction technique

dc.contributor.authorJena, Aen_AU
dc.contributor.authorLee, PHen_AU
dc.contributor.authorPang, WKen_AU
dc.contributor.authorHsiao, KCen_AU
dc.contributor.authorPeterson, VKen_AU
dc.contributor.authorDarwish, TAen_AU
dc.contributor.authorYepuri, NRen_AU
dc.contributor.authorWu, SHen_AU
dc.contributor.authorChang, Hen_AU
dc.contributor.authorLiu, RSen_AU
dc.date.accessioned2021-08-12T02:20:28Zen_AU
dc.date.available2021-08-12T02:20:28Zen_AU
dc.date.issued2019-12-03en_AU
dc.date.statistics2021-08-12en_AU
dc.descriptionThis special issue of the Journal of the Chinese Chemical Society is dedicated to Prof. Chien-Hong Cheng on the occasion of his 70th birthday. 12 articles/reviews representing cutting-edge research carried out by many of Prof. Cheng's friends, colleagues, former students and coworkers are collected in this issue.en_AU
dc.description.abstractLiCoO2 (LCO) with average particle distribution of 8 μm (LCO-A) and 11 μm (LCO-B) exhibit substantial differences in cycle performance. The half-cells have similar first-cycle discharge capacities of 173 and 175 mAh/g at 0.25 C, but after 100 cycles, the discharge capacities are substantially different, that is, 114 and 141 mAh/g for LCO-A and LCO-B, respectively. Operando neutron powder diffraction of full LCO||Li4Ti5O12 batteries show differences in the LCO reaction mechanism underpinning the electrochemical behavior. LCO-A follows a purely solid solution reaction during cycling compared to the solid solution and two-phase reaction mechanism in LCO-B. The absence of the two-phase reaction in LCO-A is consistent with a homogeneous distribution of Li throughout the particle. The two-phase reaction in LCO-B reflects two distinguishable distributions of Li within the particles. The faster capacity decay in LCO-A is correlated to an increase in electrode cracking during battery cycles. © 2019 The Chemical Society Located in Taipei & Wiley-VCH Verlag GmbH & Co.en_AU
dc.description.sponsorshipAustralian Research Council (ARC), Grant/Award Number: FT160100251; Ministry of Science and Technology of Taiwan, Grant/Award Number: MOST 107-2113-M-002-008-MY3en_AU
dc.identifier.citationJena, A., Lee, P.-H., Pang, W. K., Hsiao, K.-C., Peterson, V. K., Darwish, T., Yepuri, N., Wu, S.-H., Chang, H, & Liu, R.-S. (2020). Monitoring the phase evolution in LiCoO2 electrodes during battery cycles using in‐situ neutron diffraction technique. Journal of the Chinese Chemical Society, 67(3), 344-352. doi:10.1002/jccs.201900448en_AU
dc.identifier.issn2192-6549en_AU
dc.identifier.issue3en_AU
dc.identifier.journaltitleJournal of the Chinese Chemical Societyen_AU
dc.identifier.pagination344-352en_AU
dc.identifier.urihttps://doi.org/10.1002/jccs.201900448en_AU
dc.identifier.urihttps://apo.ansto.gov.au/dspace/handle/10238/11339en_AU
dc.identifier.volume67en_AU
dc.language.isoenen_AU
dc.publisherJohn Wiley & Sons, Incen_AU
dc.subjectPhase transformationsen_AU
dc.subjectElectric batteriesen_AU
dc.subjectElectrodesen_AU
dc.subjectLithium ionsen_AU
dc.subjectLithiumen_AU
dc.subjectCobalten_AU
dc.subjectOxidesen_AU
dc.subjectNeutron diffractionen_AU
dc.titleMonitoring the phase evolution in LiCoO2 electrodes during battery cycles using in-situ neutron diffraction techniqueen_AU
dc.typeJournal Articleen_AU
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.63 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections