Hydration study of soy protein in the ‘dry state’

dc.contributor.authorKealley, CSen_AU
dc.contributor.authorRout, MKen_AU
dc.contributor.authorAppelqvist, IAMen_AU
dc.contributor.authorStrounina, EVen_AU
dc.contributor.authorWhittaker, AKen_AU
dc.contributor.authorGidley, MJen_AU
dc.contributor.authorGilbert, EPen_AU
dc.contributor.authorLillford, PJen_AU
dc.date.accessioned2025-05-09T05:00:32Zen_AU
dc.date.available2025-05-09T05:00:32Zen_AU
dc.date.issued2008-05-19en_AU
dc.date.statistics2025-02-27en_AU
dc.description.abstractThe work reported focuses on the methodology employed by the Australian Food Futures collaboration to the study of proteins in the dry state. To date, 'dry' proteins (here used to describe solids with a moisture content <30% w/w) have been characterised by differential scanning calorimetry (DSC), fourier transform - infrared spectroscopy (FT-IR), 1H t2 relaxation and 13C high resolution nuclear magnetic resonance (NMR) spectroscopy and small angle x-ray scattering (SAXS). The case study presented in this paper centres on the use of these techniques to characterise the differences in structure between native and denatured glycinin, a soy protein, at low and controlled moisture contents. The glass transition temperature of native soy glycinin (11S) at room temperature (∼ 27°C), is at a moisture content of 13.4%, whereas the denatured soy glycinin undergoes a glass transition at 46°C at the same moisture content. With increasing water content, NMR experiments show that proton exchange with protein surfaces (*H T2) and protein segmental mobility (13C) both increase. A β - sheet toβ - turn structural rearrangement is inferred as the position of the Amide-I FT-IR band shifts from 1634 to 1630 cm"1. Proton T2 relaxation rates range from < 1 ms to 25 ms, with shorter (< 1 ms) relaxation rates dominant up to 17.4% moisture for both native and denatured glycinin. ,13C NMR experiments show motional heterogeneity for native glycinin, with a more uniform and restricted mobility after denaturation. Small angle scattering data show an expansion of -7% in the unit cell of the material as the moisture content is increased from 4.6% up to 13.4%, however there are no significant crystalline or other major structural changes in the protein over the spatial dimension probed (1-100 nm). © The Royal Society of Chemistry 2008.en_AU
dc.identifier.booktitleGums and Stabilisers for the Food Industry 14en_AU
dc.identifier.citationKealley, C., Rout, M. K., Appelqvist, I., Strounina, E., Whittaker, A., Gidley, M., Gilbert, E., & Lillford, P. (2008). Hydration study of soy protein in the ‘dry state’. Paper presented to the 14th Gums and Stablisers for the Food Industry Conference, 18-22 June 2007, NEWI, Wrexham UK. In P. A. Williams & G. O. Phillips (Eds.), Gums and Stabilisers for the Food Industry (Chapter 14 : pp. 87-95). The Royal Society of Chemistry. doi:10.1039/9781847558312-00087en_AU
dc.identifier.conferenceenddate2007-06-22en_AU
dc.identifier.conferencename4th Gums and Stablisers for the Food Industry Conferenceen_AU
dc.identifier.conferenceplaceNEWI, Wrexham UKen_AU
dc.identifier.conferencestartdate2007-06-18en_AU
dc.identifier.editorsPeter A. Williams & Gly O. Phillipsen_AU
dc.identifier.isbn9780854044610en_AU
dc.identifier.isbn9781847558312en_AU
dc.identifier.pagination87-95en_AU
dc.identifier.urihttps://doi.org/10.1039/9781847558312-00087en_AU
dc.identifier.urihttps://apo.ansto.gov.au/handle/10238/16163en_AU
dc.languageEnglishen_AU
dc.language.isoenen_AU
dc.publisherRoyal Society of Chemistryen_AU
dc.subjectHydrationen_AU
dc.subjectSoybeansen_AU
dc.subjectMoistureen_AU
dc.subjectProteinsen_AU
dc.subjectAmbient temperatureen_AU
dc.subjectConcentration ratioen_AU
dc.subjectInfrared spectrometersen_AU
dc.subjectAustraliaen_AU
dc.subjectSmall angle scatteringen_AU
dc.subjectGlycineen_AU
dc.titleHydration study of soy protein in the ‘dry state’en_AU
dc.typeConference Paperen_AU
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.66 KB
Format:
Plain Text
Description: