Unlocking fast and reversible sodium intercalation in NASICON Na4MnV(PO4)3 by fluorine substitution

dc.contributor.authorHou, Jen_AU
dc.contributor.authorHadouchi, Men_AU
dc.contributor.authorSui, Len_AU
dc.contributor.authorLiu, Jen_AU
dc.contributor.authorTang, Men_AU
dc.contributor.authorKan, WHen_AU
dc.contributor.authorAvdeev, Men_AU
dc.contributor.authorZhong, Gen_AU
dc.contributor.authorLiao, YKen_AU
dc.contributor.authorLai, YHen_AU
dc.contributor.authorChu, YHen_AU
dc.contributor.authorLin, HJen_AU
dc.contributor.authorChen, CTen_AU
dc.contributor.authorHu, ZWen_AU
dc.contributor.authorHuang, YHen_AU
dc.contributor.authorMa, Jen_AU
dc.date.accessioned2024-10-03T06:32:06Zen_AU
dc.date.available2024-10-03T06:32:06Zen_AU
dc.date.issued2021-11en_AU
dc.date.statistics2024-06-12en_AU
dc.description.abstractThe exploitation of high energy and high power densities cathode materials for sodium ion batteries is a challenge. Na-super-ionic-conductor (NASICON) Na4MnV(PO4)3 is one of promising high-performance and low-cost cathode materials, however, still suffers from not reaching the theoretical capacity, low rate capability, and poor cycling stability. In this work, we deploy a novel sodium-deficient NASICON fluorinated phosphate cathode material for sodium ion batteries which demonstrates, notably, high energy and high power densities concomitant with high sodium diffusion kinetics. The enhanced performance of this novel Na3.85⬜0.15MnV(PO3.95F0.05)3 cathode was evidenced by demonstrating a relatively high energy density of ∼380 Wh kg−1 at low rate with much improved rate capability compared to non-doped Na4MnV(PO4)3, and long cycling life over 2000 cycles at high current rates. The structural investigation during battery operation using in situ x-ray diffraction (XRD) reveals bi-phase mechanism with high structural reversibility. The combined XRD and 23Na nuclear magnetic resonance (NMR) analyses demonstrate that the sodium extraction/insertion from Na2 is faster than Na1 site. These findings open promising prospects for unlocking of high energy and high power densities of NASICON phosphate materials by fluorine substitution towards high-performance sodium ion batteries. © 2021 Elsevier B.V.en_AU
dc.description.sponsorshipThe research leading to these results has received funding from the National Nature Science Foundation of China (21805209 and 51632001) and the Fundamental Research Funds for the Central Universities. T.M. acknowledges the support from the National Natural Science Foundation of China (21974007). W.H.K. thanks the support from the National Natural Science Foundation of China (11805034, 21704105, and U1930102), and Natural Science Foundation of Guangdong Province (2017A030313021). W.H.K. appreciates the beamtime in ECHIDNA granted from Australian Centre for Neutron Scattering (ACNS) in ANSTO. We acknowledge support from the Max Planck-POSTECH-Hsinchu Center for Complex Phase Materials.en_AU
dc.identifier.citationHou, J., Hadouchi, M., Sui, L., Liu, J., Tang, M., Kan, W. H., Avdeev, M., Zhong, G., Liao, Y.-K., Lai, Y.-H., Chu, Y.-H., Lin, H.-J., Chen, C.-T., Hu, Z., Huang, Y., & Ma, J. (2021). Unlocking fast and reversible sodium intercalation in NASICON Na4MnV(PO4)3 by fluorine substitution. Energy Storage Materials, 42, 307-316. doi:10.1016/j.ensm.2021.07.040en_AU
dc.identifier.issn2405-8297en_AU
dc.identifier.journaltitleEnergy Storage Materialsen_AU
dc.identifier.pagination307-316en_AU
dc.identifier.urihttps://doi.org/10.1016/j.ensm.2021.07.040en_AU
dc.identifier.urihttps://apo.ansto.gov.au/handle/10238/15704en_AU
dc.identifier.volume42en_AU
dc.languageEnglishen_AU
dc.language.isoenen_AU
dc.publisherElsevieren_AU
dc.subjectSodiumen_AU
dc.subjectFluorineen_AU
dc.subjectCathodesen_AU
dc.subjectDiffusionen_AU
dc.subjectElectric batteriesen_AU
dc.subjectPower densityen_AU
dc.subjectX-ray diffractionen_AU
dc.titleUnlocking fast and reversible sodium intercalation in NASICON Na4MnV(PO4)3 by fluorine substitutionen_AU
dc.typeJournal Articleen_AU
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.66 KB
Format:
Plain Text
Description:
Collections