Giant barocaloric effects in sodium hexafluorophosphate and hexafluoroarsenate
dc.contributor.author | Zhang, Z | en_AU |
dc.contributor.author | Hattori, T | en_AU |
dc.contributor.author | Song, R | en_AU |
dc.contributor.author | Yu, DH | en_AU |
dc.contributor.author | Mole, RA | en_AU |
dc.contributor.author | Chen, J | en_AU |
dc.contributor.author | He, LH | en_AU |
dc.contributor.author | Zhang, ZD | en_AU |
dc.contributor.author | Li, B | en_AU |
dc.date.accessioned | 2025-04-04T02:55:34Z | en_AU |
dc.date.available | 2025-04-04T02:55:34Z | en_AU |
dc.date.issued | 2024-07-21 | en_AU |
dc.date.statistics | 2024-10-02 | en_AU |
dc.description.abstract | Solid-state refrigeration using barocaloric materials is environmentally friendly and highly efficient, making it a subject of global interest over the past decade. Here, we report giant barocaloric effects in sodium hexafluorophosphate (NaPF6) and sodium hexafluoroarsenate (NaAsF6) that both undergo a cubic-to-rhombohedral phase transition near room temperature. We have determined that the low-temperature phase structure of NaPF6 is a rhombohedral structure with space group R3¯ by neutron powder diffraction. There are three Raman active vibration modes in NaPF6 and NaAsF6, i.e., F2g, Eg, and A1g. The phase transition temperature varies with pressure at a rate of dTt/dP = 250 and 310 K GPa−1 for NaPF6 and NaAsF6. The pressure-induced entropy changes of NaPF6 and NaAsF6 are determined to be around 45.2 and 35.6 J kg−1 K−1, respectively. The saturation driving pressure is about 40 MPa. The pressure-dependent neutron powder diffraction suggests that the barocaloric effects are related to the pressure-induced cubic-to-rhombohedral phase transitions. © 2024 AIP Publishing LLC. | en_AU |
dc.description.sponsorship | This work was supported by the Ministry of Science and Technology of China (Grant Nos. 2022YFE0109900 and 2021YFB3501201), the Key Research Program of Frontier Sciences of Chinese Academy of Sciences (Grant No. ZDBS-LY-JSC002), the International Partner Program of Chinese Academy of Sciences (Grant No. 174321KYSB20200008), the IMR Innovation Fund, the CSNS Consortium on High-performance Materials of Chinese Academy of Sciences, the Young Innovation Talent Program of Shenyang (Grant No. RC210435), and the National Natural Science Foundation of China (NNSFC) (Grant Nos. 11934007 and 11804346). We also acknowledge the beam time provided by ANSTO (Proposal Nos. 7867 and IC8021), GPPD (Proposal No. P1820033000002), and J-PARC (No. 2018I0011). | en_AU |
dc.identifier.citation | Zhang, Z., Hattori, T., Song, R., Yu, D., Mole, R., Chen, J., He, L., Zhang, Z., & Li, B. (2024). Giant barocaloric effects in sodium hexafluorophosphate and hexafluoroarsenate. Journal of Applied Physics, 136(3). doi:10.1063/5.0211085 | en_AU |
dc.identifier.issn | 0021-8979 | en_AU |
dc.identifier.issn | 1089-7550 | en_AU |
dc.identifier.issue | 3 | en_AU |
dc.identifier.journaltitle | Journal of Applied Physics | en_AU |
dc.identifier.pagination | 035105- | en_AU |
dc.identifier.uri | https://doi.org/10.1063/5.0211085 | en_AU |
dc.identifier.uri | https://apo.ansto.gov.au/handle/10238/16127 | en_AU |
dc.identifier.volume | 136 | en_AU |
dc.language | English | en_AU |
dc.language.iso | en | en_AU |
dc.publisher | AIP Publishing | en_AU |
dc.subject | Sodium | en_AU |
dc.subject | Refrigeration | en_AU |
dc.subject | Materials | en_AU |
dc.subject | Temperature range | en_AU |
dc.subject | Neutrons | en_AU |
dc.subject | Crystallography | en_AU |
dc.subject | Raman spectroscopy | en_AU |
dc.subject | Phase transformations | en_AU |
dc.subject | X-ray diffraction | en_AU |
dc.subject | Chemical composition | en_AU |
dc.subject | Crystal lattices | en_AU |
dc.subject | Refrigerators | en_AU |
dc.title | Giant barocaloric effects in sodium hexafluorophosphate and hexafluoroarsenate | en_AU |
dc.type | Journal Article | en_AU |
Files
License bundle
1 - 1 of 1