Giant barocaloric effects in sodium hexafluorophosphate and hexafluoroarsenate

dc.contributor.authorZhang, Zen_AU
dc.contributor.authorHattori, Ten_AU
dc.contributor.authorSong, Ren_AU
dc.contributor.authorYu, DHen_AU
dc.contributor.authorMole, RAen_AU
dc.contributor.authorChen, Jen_AU
dc.contributor.authorHe, LHen_AU
dc.contributor.authorZhang, ZDen_AU
dc.contributor.authorLi, Ben_AU
dc.date.accessioned2025-04-04T02:55:34Zen_AU
dc.date.available2025-04-04T02:55:34Zen_AU
dc.date.issued2024-07-21en_AU
dc.date.statistics2024-10-02en_AU
dc.description.abstractSolid-state refrigeration using barocaloric materials is environmentally friendly and highly efficient, making it a subject of global interest over the past decade. Here, we report giant barocaloric effects in sodium hexafluorophosphate (NaPF6) and sodium hexafluoroarsenate (NaAsF6) that both undergo a cubic-to-rhombohedral phase transition near room temperature. We have determined that the low-temperature phase structure of NaPF6 is a rhombohedral structure with space group R3¯ by neutron powder diffraction. There are three Raman active vibration modes in NaPF6 and NaAsF6, i.e., F2g, Eg, and A1g. The phase transition temperature varies with pressure at a rate of dTt/dP = 250 and 310 K GPa−1 for NaPF6 and NaAsF6. The pressure-induced entropy changes of NaPF6 and NaAsF6 are determined to be around 45.2 and 35.6 J kg−1 K−1, respectively. The saturation driving pressure is about 40 MPa. The pressure-dependent neutron powder diffraction suggests that the barocaloric effects are related to the pressure-induced cubic-to-rhombohedral phase transitions. © 2024 AIP Publishing LLC.en_AU
dc.description.sponsorshipThis work was supported by the Ministry of Science and Technology of China (Grant Nos. 2022YFE0109900 and 2021YFB3501201), the Key Research Program of Frontier Sciences of Chinese Academy of Sciences (Grant No. ZDBS-LY-JSC002), the International Partner Program of Chinese Academy of Sciences (Grant No. 174321KYSB20200008), the IMR Innovation Fund, the CSNS Consortium on High-performance Materials of Chinese Academy of Sciences, the Young Innovation Talent Program of Shenyang (Grant No. RC210435), and the National Natural Science Foundation of China (NNSFC) (Grant Nos. 11934007 and 11804346). We also acknowledge the beam time provided by ANSTO (Proposal Nos. 7867 and IC8021), GPPD (Proposal No. P1820033000002), and J-PARC (No. 2018I0011).en_AU
dc.identifier.citationZhang, Z., Hattori, T., Song, R., Yu, D., Mole, R., Chen, J., He, L., Zhang, Z., & Li, B. (2024). Giant barocaloric effects in sodium hexafluorophosphate and hexafluoroarsenate. Journal of Applied Physics, 136(3). doi:10.1063/5.0211085en_AU
dc.identifier.issn0021-8979en_AU
dc.identifier.issn1089-7550en_AU
dc.identifier.issue3en_AU
dc.identifier.journaltitleJournal of Applied Physicsen_AU
dc.identifier.pagination035105-en_AU
dc.identifier.urihttps://doi.org/10.1063/5.0211085en_AU
dc.identifier.urihttps://apo.ansto.gov.au/handle/10238/16127en_AU
dc.identifier.volume136en_AU
dc.languageEnglishen_AU
dc.language.isoenen_AU
dc.publisherAIP Publishingen_AU
dc.subjectSodiumen_AU
dc.subjectRefrigerationen_AU
dc.subjectMaterialsen_AU
dc.subjectTemperature rangeen_AU
dc.subjectNeutronsen_AU
dc.subjectCrystallographyen_AU
dc.subjectRaman spectroscopyen_AU
dc.subjectPhase transformationsen_AU
dc.subjectX-ray diffractionen_AU
dc.subjectChemical compositionen_AU
dc.subjectCrystal latticesen_AU
dc.subjectRefrigeratorsen_AU
dc.titleGiant barocaloric effects in sodium hexafluorophosphate and hexafluoroarsenateen_AU
dc.typeJournal Articleen_AU
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.66 KB
Format:
Plain Text
Description:
Collections