Effects of crowding and environment on the evolution of conformational ensembles of the multi-stimuli-responsive intrinsically disordered protein, Rec1-resilin: a small-angle scattering investigation

dc.contributor.authorBalu, Ren_AU
dc.contributor.authorMata, JPen_AU
dc.contributor.authorKnott, RBen_AU
dc.contributor.authorElvin, CMen_AU
dc.contributor.authorHill, AJen_AU
dc.contributor.authorChoudhury, NRen_AU
dc.contributor.authorDutta, NKen_AU
dc.date.accessioned2023-11-17T02:41:50Zen_AU
dc.date.available2023-11-17T02:41:50Zen_AU
dc.date.issued2016-06-09en_AU
dc.date.statistics2023-11-13en_AU
dc.description.abstractIn this study, we explore the overall structural ensembles and transitions of a biomimetic, multi-stimuli-responsive, intrinsically disordered protein (IDP), Rec1-resilin. The structural transition of Rec1-resilin with change in molecular crowding and environment is evaluated using small-angle neutron scattering and small-angle X-ray scattering. The quantitative analyses of the experimental scattering data using a combination of computational models allowed comprehensive description of the structural evolution, organization, and conformational ensembles of Rec1-resilin in response to the changes in concentration, pH, and temperature. Rec1-resilin in uncrowded solutions demonstrates the equilibrium intrinsic structure quality of an IDP with radius of gyration Rg ∼ 5 nm, and a scattering function for the triaxial ellipsoidal model best fit the experimental dataset. On crowding (increase in concentration >10 wt %), Rec1-resilin molecules exert intermolecular repulsive force of interaction, the Rg value reduces with a progressive increase in concentration, and molecular chains transform from a Gaussian coil to a fully swollen coil. It is also revealed that the structural organization of Rec1-resilin dynamically transforms from a rod (pH 2) to coil (pH 4.8) and to globular (pH 12) as a function of pH. The findings further support the temperature-triggered dual-phase-transition behavior of Rec1-resilin, exhibiting rod-shaped structural organization below the upper critical solution temperature (∼4 °C) and a large but compact structure above the lower critical solution temperature (∼75 °C). This work attempted to correlate unusual responsiveness of Rec1-resilin to the evolution of conformational ensembles. © 2016 American Chemical Societyen_AU
dc.identifier.citationBalu, R., Mata, J. P., Knott, R., Elvin, C. M., Hill, A. J., Choudhury, N. R., & Dutta, N. K. (2016). Effects of crowding and environment on the evolution of conformational ensembles of the multi-stimuli-responsive intrinsically disordered protein, Rec1-resilin: a small-angle scattering investigation. The Journal of Physical Chemistry B, 120(27), 6490-6503. doi:10.1021/acs.jpcb.6b02475en_AU
dc.identifier.issn1520-5207en_AU
dc.identifier.issue27en_AU
dc.identifier.journaltitleThe Journal of Physical Chemistry Ben_AU
dc.identifier.pagination6490-6503en_AU
dc.identifier.urihttps://apo.ansto.gov.au/handle/10238/15202en_AU
dc.identifier.volume120en_AU
dc.language.isoenen_AU
dc.publisherAmerican Chemical Societyen_AU
dc.relation.urihttps://doi.org/10.1021/acs.jpcb.6b02475en_AU
dc.subjectMonomersen_AU
dc.subjectPeptidesen_AU
dc.subjectProteinsen_AU
dc.subjectX-ray diffractionen_AU
dc.subjectSmall angle scatteringen_AU
dc.subjectMicrostructureen_AU
dc.titleEffects of crowding and environment on the evolution of conformational ensembles of the multi-stimuli-responsive intrinsically disordered protein, Rec1-resilin: a small-angle scattering investigationen_AU
dc.typeJournal Articleen_AU
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.63 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections