Few-layer hexagonal boron nitride / 3D printable polyurethane composite for neutron radiation shielding applications

dc.contributor.authorKnott, JCen_AU
dc.contributor.authorKhakbaz, HSen_AU
dc.contributor.authorAllen, Jen_AU
dc.contributor.authorWu, Len_AU
dc.contributor.authorMole, RAen_AU
dc.contributor.authorBaldwin, Cen_AU
dc.contributor.authorNelson, Aen_AU
dc.contributor.authorSokolova, AVen_AU
dc.contributor.authorBeirne, Sen_AU
dc.contributor.authorInnis, PCen_AU
dc.contributor.authorFrost, DGen_AU
dc.contributor.authorCortie, DLen_AU
dc.contributor.authorRule, KCen_AU
dc.date.accessioned2024-02-27T23:10:00Zen_AU
dc.date.available2024-02-27T23:10:00Zen_AU
dc.date.issued2023-03en_AU
dc.date.statistics2024-02-28en_AU
dc.description.abstractFunctional polymer composites can confer a range of benefits in practical applications that go beyond the individual properties of the constituent materials. Here we investigate and characterize the neutron absorbing capability of few-layer hexagonal boron nitride (h-BN) in composite with a 3D-printable thermoplastic polyurethane, and present experiment and simulation data to understand the processes and mechanisms in play. Shielding and protection from neutrons can be necessary in a range of terrestrial and space-based applications. The neutron absorption of composites with varying fractions of h-BN is strongly energy-dependent in the low-energy regime below 10 meV, and a composite containing 20 wt% h-BN shows a 70-fold reduction in the transmission relative to pure polyurethane at 0.5 meV neutron energies. This is attributed to the strong neutron capture cross-section of the naturally abundant boron-10 isotope, with energy-dependent measurements up to 100 meV confirming this point. Using inelastic neutron spectroscopy, we identify additional effects from the hydrogen in the polyurethane which both scatters diffusively and moderates neutrons inelastically via its phonon spectrum, enhancing the neutron absorption characteristics. Two models – based on analytic functions and Monte Carlo numerical techniques – are presented, and show excellent agreement with experiment results. The 3D-printability of the composite is demonstrated, and the opportunities and challenges for deploying these composites in neutron radiation protection applications are discussed. © 2022 Published by Elsevier Ltd.en_AU
dc.description.sponsorshipThe authors acknowledge fruitful discussion with Norman Booth, Rachel White, and Dehong Yu. JA is a recipient of an AINSE postgraduate award. The authors would like to acknowledge funding made available to this project through the UOW-ANSTO Seed Funding program. The authors would like to gratefully acknowledge the Australian National Fabrication Facility (ANFF) Materials node for access to specialist equipment and expertise. This work used the Materials node of the NCRIS-enabled Australian National Fabrication Facility (ANFF).en_AU
dc.identifier.articlenumber109876en_AU
dc.identifier.citationKnott, J. C., Khakbaz, H., Allen, J., Wu, L., Mole, R. A., Baldwin, C., Nelson, A., Sokolova, A., Beirne, S., Innis, P. C., Frost, D. G., Cortie, D., & Rule, K. C. (2023). Few-layer hexagonal boron nitride / 3D printable polyurethane composite for neutron radiation shielding applications. Composites Science and Technology, 233, 109876. doi:10.1016/j.compscitech.2022.109876en_AU
dc.identifier.issn0266-3538en_AU
dc.identifier.journaltitleComposites Science and Technologyen_AU
dc.identifier.urihttp://dx.doi.org/10.1016/j.compscitech.2022.109876en_AU
dc.identifier.urihttps://apo.ansto.gov.au/handle/10238/15459en_AU
dc.identifier.volume233en_AU
dc.languageEnglishen_AU
dc.language.isoenen_AU
dc.publisherElsevieren_AU
dc.subjectGrapheneen_AU
dc.subjectMaterialsen_AU
dc.subjectComposite materialsen_AU
dc.subjectNanoparticlesen_AU
dc.subjectManufacturingen_AU
dc.subjectMeV Range 01-10en_AU
dc.subjectBoron 10en_AU
dc.subjectPhononsen_AU
dc.subjectRadiation protectionen_AU
dc.titleFew-layer hexagonal boron nitride / 3D printable polyurethane composite for neutron radiation shielding applicationsen_AU
dc.typeJournal Articleen_AU
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.66 KB
Format:
Plain Text
Description:
Collections