Structural evolution and stability of sol-gel biocatalysts

dc.contributor.authorRodgers, LEen_AU
dc.contributor.authorHolden, PJen_AU
dc.contributor.authorKnott, RBen_AU
dc.contributor.authorFoster, LJRen_AU
dc.contributor.authorBartlett, JRen_AU
dc.date.accessioned2023-01-10T22:30:39Zen_AU
dc.date.available2023-01-10T22:30:39Zen_AU
dc.date.issued2005-11-27en_AU
dc.date.statistics2022-05-10en_AU
dc.descriptionPhysical copy held by ANSTO Library at DDC 539.7217/2en_AU
dc.description.abstractImmobilisation strategies for catalytic enzymes are important as they allow reuse of the biocatalysts. Sol-gel materials have been used to immobilise Candida antarctica lipase B (CALB), a commonly used industrial enzyme with a known crystal structure. The sol-gel bioencapsulate is produced through the condensation of suitable metal alkoxides in the presence of CALB, yielding materials with controlled pore sizes, volume and surface chemistry. Sol-gel matrices have been shown to prolong the catalytic life and enhance the activity of CALB, although the molecular basis for this effect has yet to be elucidated due to the limitations of analysis techniques applied to date. Small angle neutron scattering (SANS) allows such multicomponent systems to be characterised through contrast matching. In the sol-gel bioencapsulate system, at the contrast match point for silica, residual scattering intensity is due to the CALB and density fluctuations in the matrix. A SANS contrast variation series found the match point for the silica matrix, both with and without enzyme present, to be around 35 percent. The model presented here proposes a mechanism for the interaction between CALB and the surrounding sol-gel matrix, and the observed improvement in enzyme activity and matrix strength. The SANS protocol developed here may be applied more generally to bioencapsulates. © The Authorsen_AU
dc.identifier.booktitleFinal Programme and Abstract Booken_AU
dc.identifier.citationRodgers, L. E., Holden, P, J., Knott, R. B., Foster, L. J. R., & Bartlett, J. R. (2005). Structural evolution and stability of sol-gel biocatalysts. Paper presented at the Eighth International Conference on Neutron Scattering ICNS 2005: "Neutrons for structure and dynamics - a new era", Sydney Convention & Exhibition Centre, Sydney, Australia, 27 November-2 December 2005. In Final Programme and Abstract Book, (pp. 128).en_AU
dc.identifier.conferenceenddate2 December 2005en_AU
dc.identifier.conferencenameEighth International Conference on Neutron Scattering ICNS 2005: 'Neutrons for structure and dynamics - a new eraen_AU
dc.identifier.conferenceplaceSydney, Australiaen_AU
dc.identifier.conferencestartdate27 November 2005en_AU
dc.identifier.urihttps://apo.ansto.gov.au/dspace/handle/10238/14290en_AU
dc.language.isoenen_AU
dc.publisherThe Bragg Institute, Australian Nuclear Science and Technology Organisationen_AU
dc.subjectChemistryen_AU
dc.subjectComplexesen_AU
dc.subjectEnzymesen_AU
dc.subjectEsterasesen_AU
dc.subjectFungien_AU
dc.subjectMicroorganismsen_AU
dc.subjectMicrostructureen_AU
dc.subjectMineralsen_AU
dc.subjectOrganic compoundsen_AU
dc.subjectPhysical propertiesen_AU
dc.subjectPlantsen_AU
dc.subjectProteinsen_AU
dc.subjectScatteringen_AU
dc.subjectVariationsen_AU
dc.titleStructural evolution and stability of sol-gel biocatalystsen_AU
dc.typeConference Abstracten_AU
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.63 KB
Format:
Item-specific license agreed upon to submission
Description: