Structural evolution and high-voltage structural stability of Li(NixMnyCoz)O2 electrodes

dc.contributor.authorGoonetilleke, Den_AU
dc.contributor.authorSharma, Nen_AU
dc.contributor.authorPang, WKen_AU
dc.contributor.authorPeterson, VKen_AU
dc.contributor.authorPetibon, Ren_AU
dc.contributor.authorLi, Jen_AU
dc.contributor.authorDahn, JRen_AU
dc.date.accessioned2021-08-17T03:42:44Zen_AU
dc.date.available2021-08-17T03:42:44Zen_AU
dc.date.issued2018-12-17en_AU
dc.date.statistics2021-08-12en_AU
dc.description.abstractPositive electrode materials remain a limiting factor for the energy density of lithium-ion batteries (LIBs). Improving the structural stability of these materials over a wider potential window presents an opportune path to higher energy density LIBs. Herein, operando neutron diffraction is used to elucidate the relationship between the structural evolution and electrochemical behavior for a series of Li-ion pouch cells containing Li(NixMnyCoz)O2 (x + y + z = 1) electrode chemistries. The structural stability of these electrodes during charge and discharge cycling across a wide potential window is found to be influenced by the ratio of transition-metal atoms in the material. Of the electrodes investigated in this study, the Li(Ni0.4Mn0.4Co0.2)O2 composition exhibits the smallest magnitude of structural expansion and contraction during cycling while also providing favorable structural stability at high voltage. Greater structural change was observed in electrodes with a higher Ni content, while decreasing inversely to the Ni and Co content in the positive electrode. The combination of structural and electrochemical characterization of a wide range of NMC compositions provides useful insight for the design and application of ideal electrode compositions for long-term cycling and structural stability during storage at the charged state. © 2018 American Chemical Societyen_AU
dc.identifier.citationGoonetilleke, D., Sharma, N., Pang, W. K., Peterson, V. K., Petibon, R., Li, J., & Dahn, J. R. (2018). Structural evolution and high-voltage structural stability of Li(NixMnyCoz) O2 electrodes. Chemistry of Materials, 31(2), 376-386. doi:10.1021/acs.chemmater.8b03525en_AU
dc.identifier.issn1520-5002en_AU
dc.identifier.issue2en_AU
dc.identifier.journaltitleChemistry of Materialsen_AU
dc.identifier.pagination376-386en_AU
dc.identifier.urihttps://doi.org/10.1021/acs.chemmater.8b03525en_AU
dc.identifier.urihttps://apo.ansto.gov.au/dspace/handle/10238/11382en_AU
dc.identifier.volume31en_AU
dc.language.isoenen_AU
dc.publisherAmerican Chemical Societyen_AU
dc.subjectCrystal latticesen_AU
dc.subjectElectrodesen_AU
dc.subjectElectrochemical cellsen_AU
dc.subjectTransition elementsen_AU
dc.subjectMaterialsen_AU
dc.subjectElectric potentialen_AU
dc.titleStructural evolution and high-voltage structural stability of Li(NixMnyCoz)O2 electrodesen_AU
dc.typeJournal Articleen_AU
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.63 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections