Probing the effect of Mg doping on triclinic Na2Mn3O7 transition metal oxide as cathode material for sodium-ion batteries

dc.contributor.authorSiriwardena, DPen_AU
dc.contributor.authorFernando, JFSen_AU
dc.contributor.authorWang, Ten_AU
dc.contributor.authorFirestein, KLen_AU
dc.contributor.authorZhang, Cen_AU
dc.contributor.authorBrand, HEAen_AU
dc.contributor.authorJones, MWMen_AU
dc.contributor.authorKewish, CMen_AU
dc.contributor.authorBerntsen, Pen_AU
dc.contributor.authorJenkins, Ten_AU
dc.contributor.authorLewis, CEMen_AU
dc.contributor.authorvon Treifeldt, JEen_AU
dc.contributor.authorDubal, DPen_AU
dc.contributor.authorGolberg, DVen_AU
dc.date.accessioned2021-10-21T01:01:47Zen_AU
dc.date.available2021-10-21T01:01:47Zen_AU
dc.date.issued2021-02-20en_AU
dc.date.statistics2021-10-20en_AU
dc.description.abstractTriclinic Na2Mn3O7 has been identified as a promising material for high-capacity sodium-ion batteries. However, the knowledge on the effect of doping of metal ions and structural transformations of Na2Mn3O7 during dis(charge) is limited. Integration of alkali metal-ions, specially Mg2+ can enhance the electrochemical properties in transition metal oxides. Herein, a series of Mg2+ doped triclinic Na2Mn3O7 cathode materials was explored for the first time. Electrochemical analysis revealed that Mg2+ improves specific capacities, and rate capabilities. Ex situ X-ray diffraction (XRD) and Galvanostatic charge discharge cycling (GCD) showed that the triclinic phase reversibly converts into two monoclinic phases at high Na+ insertion levels. Na+ extraction at high potentials is supported by another biphasic region which converts to a major triclinic phase at the end of the charge. GCD, cyclic voltammetry (CV) and ex situ X-ray absorption spectroscopy (XAS) documented that the capacity mainly evolved through a Mn4+/3+ redox couple and a reversible O2-/n− redox reaction. CV and Galvanostatic intermittent titration techniques (GITT) showed that Mg2+ reduces the Na+-vacancy ordering and improves the Na+ diffusion. The 2 mol.% Mg-doped material exhibited a high specific capacity of 143 mAh/g after 30 cycles and a rate capability of 93 mAh/g (at 500 mA/g). GCD analysis demonstrated that O2-/n− redox is remarkably stable up to at least 90 cycles. Full cells made using the 0.5 mol.% Mg-doped material displayed a promising discharge specific capacity of 80 mAh/g. The effects of cation doping into the complex crystal structures, phase transformations during Na+ de(intercalation) and the importance of O2-/n− redox for achieving high capacities were uncovered. The findings of this work will guide the design of novel cathode materials for sodium-ion batteries. ©2021 Elsevier Ltd.en_AU
dc.identifier.articlenumber139139en_AU
dc.identifier.citationSiriwardena, D. P., Fernando, J. F., Wang, T., Firestein, K. L., Zhang, C., Brand, H. E. A., Jones, W. M. W., Kewish, C. M., Berntsen, P., Jenkins, T., Lewis, C.-E. M., von Triefeldt, J. E., Dubal, D. P. & Golberg, D. V. (2021). Probing the effect of Mg doping on triclinic Na2Mn3O7 transition metal oxide as cathode material for sodium-ion batteries. Electrochimica Acta, 394, 139139. doi:10.1016/j.electacta.2021.139139en_AU
dc.identifier.issn0013-4686en_AU
dc.identifier.journaltitleElectrochimica Actaen_AU
dc.identifier.urihttps://doi.org/10.1016/j.electacta.2021.139139en_AU
dc.identifier.urihttps://apo.ansto.gov.au/dspace/handle/10238/12030en_AU
dc.identifier.volume394en_AU
dc.language.isoenen_AU
dc.publisherElsevieren_AU
dc.subjectSodium ionsen_AU
dc.subjectSodiumen_AU
dc.subjectManganeseen_AU
dc.subjectManganese oxidesen_AU
dc.subjectElectric batteriesen_AU
dc.subjectCathodesen_AU
dc.subjectAnionsen_AU
dc.titleProbing the effect of Mg doping on triclinic Na2Mn3O7 transition metal oxide as cathode material for sodium-ion batteriesen_AU
dc.typeJournal Articleen_AU
Files
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.63 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections