Untitled

dc.contributor.authorLi, JYen_AU
dc.contributor.authorHu, Yen_AU
dc.contributor.authorLi, HWen_AU
dc.contributor.authorLiu, YFen_AU
dc.contributor.authorSu, Yen_AU
dc.contributor.authorJia, XBen_AU
dc.contributor.authorZhao, LRen_AU
dc.contributor.authorFan, YMen_AU
dc.contributor.authorGu, QFen_AU
dc.contributor.authorZhang, Hen_AU
dc.contributor.authorPang, WKen_AU
dc.contributor.authorZhu, YFen_AU
dc.contributor.authorWang, JZen_AU
dc.contributor.authorDou, SXen_AU
dc.contributor.authorChou, SLen_AU
dc.contributor.authorXiao, Yen_AU
dc.date.accessioned2025-07-04T04:49:21Zen_AU
dc.date.available2025-07-04T04:49:21Zen_AU
dc.date.issued2024-05-08en_AU
dc.date.statistics2025-07-04en_AU
dc.description.abstractP3-layered transition oxide cathodes have garnered considerable attention owing to their high initial capacity, rapid Na<sup>+</sup> kinetics, and less energy consumption during the synthesis process. Despite these merits, their practical application is hindered by the substantial capacity degradation resulting from unfavorable structural transformations, Mn dissolution and migration. In this study, we systematically investigated the failure mechanisms of P3 cathodes, encompassing Mn dissolution, migration, and the irreversible P3-O3' phase transition, culminating in severe structural collapse. To address these challenges, we proposed an interfacial spinel local interlocking strategy utilizing P3/spinel intergrowth oxide as a proof-of-concept material. As a result, P3/spinel intergrowth oxide cathodes demonstrated enhanced cycling performance. The effectiveness of suppressing Mn migration and maintaining local structure of interfacial spinel local interlocking strategy was validated through depth-etching X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, and in situ synchrotron-based X-ray diffraction. This interfacial spinel local interlocking engineering strategy presents a promising avenue for the development of advanced cathode materials for sodium-ion batteries. © 2025 American Chemical Societyen_AU
dc.description.sponsorshipThis work was supported by the National Natural Science Foundation of China (52250710680, 51971124, 52171217, 52202284), Natural Science Foundation of Zhejiang Province (LZ21E010001, LQ23E020002), Science and Technology Project of State Grid Corporation of China (5419-202158503A-0-5-ZN), Wenzhou Key Scientific and Technological Innovation Research Project (ZG2023053, ZG2022032), Wenzhou Natural Science Foundation (G20220019, G20220021), cooperation between industry and education project of Ministry of Education (220601318235513), Wenzhou Science and Technology Association Serves Scientific and Technological Innovation Projects (KJFW0201), China Scholarship Council (202106370062), Australia Research Council (DP230100198), Doctoral Innovation Foundation of Wenzhou University (3162023001001), and ARC Discovery Project (DP240102926, DP220103301).en_AU
dc.format.mediumPrint-Electronicen_AU
dc.identifier.citationLi, J.-Y., Hu, H.-Y., Li, H.-W., Liu, Y.-F., Su, Y., Jia, X.-B., Zhao, L.-F., Fan, Y.-M., Gu, Q.-F., Zhang, H., Pang, W. K., Zhu, Y.-F., Wang, J.-Z., Dou, S.-X., Chou, S.-L., & Xiao, Y. (2024). Interfacial spinel local interlocking strategy toward structural integrity in P3 oxide cathodes. ACS Nano, 18(20), 12945-12956. doi:10.1021/acsnano.4c00966en_AU
dc.identifier.issn1936-0851en_AU
dc.identifier.issn1936-086Xen_AU
dc.identifier.issue20en_AU
dc.identifier.journaltitleACS Nanoen_AU
dc.identifier.pagination12945-12956en_AU
dc.identifier.urihttps://doi.org/10.1021/acsnano.4c00966en_AU
dc.identifier.urihttps://apo.ansto.gov.au/handle/10238/16270en_AU
dc.identifier.volume18en_AU
dc.languageEnglishen_AU
dc.language.isoenen_AU
dc.publisherAmerican Chemical Societyen_AU
dc.subjectDiffractionen_AU
dc.subjectElectrodesen_AU
dc.subjectMaterialsen_AU
dc.subjectSpinelsen_AU
dc.subjectSodiumen_AU
dc.subjectElectrochemistryen_AU
dc.subjectEnergy storageen_AU
dc.subjectEnergy storage systemsen_AU
dc.subjectSpectroscopyen_AU
dc.title.alternativeInterfacial spinel local interlocking strategy toward structural integrity in P3 oxide cathodesen_AU
dc.typeJournal Articleen_AU
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
nn4c00966_si_001.pdf
Size:
1.99 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.66 KB
Format:
Plain Text
Description:
Collections