Untitled
dc.contributor.author | Li, JY | en_AU |
dc.contributor.author | Hu, Y | en_AU |
dc.contributor.author | Li, HW | en_AU |
dc.contributor.author | Liu, YF | en_AU |
dc.contributor.author | Su, Y | en_AU |
dc.contributor.author | Jia, XB | en_AU |
dc.contributor.author | Zhao, LR | en_AU |
dc.contributor.author | Fan, YM | en_AU |
dc.contributor.author | Gu, QF | en_AU |
dc.contributor.author | Zhang, H | en_AU |
dc.contributor.author | Pang, WK | en_AU |
dc.contributor.author | Zhu, YF | en_AU |
dc.contributor.author | Wang, JZ | en_AU |
dc.contributor.author | Dou, SX | en_AU |
dc.contributor.author | Chou, SL | en_AU |
dc.contributor.author | Xiao, Y | en_AU |
dc.date.accessioned | 2025-07-04T04:49:21Z | en_AU |
dc.date.available | 2025-07-04T04:49:21Z | en_AU |
dc.date.issued | 2024-05-08 | en_AU |
dc.date.statistics | 2025-07-04 | en_AU |
dc.description.abstract | P3-layered transition oxide cathodes have garnered considerable attention owing to their high initial capacity, rapid Na<sup>+</sup> kinetics, and less energy consumption during the synthesis process. Despite these merits, their practical application is hindered by the substantial capacity degradation resulting from unfavorable structural transformations, Mn dissolution and migration. In this study, we systematically investigated the failure mechanisms of P3 cathodes, encompassing Mn dissolution, migration, and the irreversible P3-O3' phase transition, culminating in severe structural collapse. To address these challenges, we proposed an interfacial spinel local interlocking strategy utilizing P3/spinel intergrowth oxide as a proof-of-concept material. As a result, P3/spinel intergrowth oxide cathodes demonstrated enhanced cycling performance. The effectiveness of suppressing Mn migration and maintaining local structure of interfacial spinel local interlocking strategy was validated through depth-etching X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, and in situ synchrotron-based X-ray diffraction. This interfacial spinel local interlocking engineering strategy presents a promising avenue for the development of advanced cathode materials for sodium-ion batteries. © 2025 American Chemical Society | en_AU |
dc.description.sponsorship | This work was supported by the National Natural Science Foundation of China (52250710680, 51971124, 52171217, 52202284), Natural Science Foundation of Zhejiang Province (LZ21E010001, LQ23E020002), Science and Technology Project of State Grid Corporation of China (5419-202158503A-0-5-ZN), Wenzhou Key Scientific and Technological Innovation Research Project (ZG2023053, ZG2022032), Wenzhou Natural Science Foundation (G20220019, G20220021), cooperation between industry and education project of Ministry of Education (220601318235513), Wenzhou Science and Technology Association Serves Scientific and Technological Innovation Projects (KJFW0201), China Scholarship Council (202106370062), Australia Research Council (DP230100198), Doctoral Innovation Foundation of Wenzhou University (3162023001001), and ARC Discovery Project (DP240102926, DP220103301). | en_AU |
dc.format.medium | Print-Electronic | en_AU |
dc.identifier.citation | Li, J.-Y., Hu, H.-Y., Li, H.-W., Liu, Y.-F., Su, Y., Jia, X.-B., Zhao, L.-F., Fan, Y.-M., Gu, Q.-F., Zhang, H., Pang, W. K., Zhu, Y.-F., Wang, J.-Z., Dou, S.-X., Chou, S.-L., & Xiao, Y. (2024). Interfacial spinel local interlocking strategy toward structural integrity in P3 oxide cathodes. ACS Nano, 18(20), 12945-12956. doi:10.1021/acsnano.4c00966 | en_AU |
dc.identifier.issn | 1936-0851 | en_AU |
dc.identifier.issn | 1936-086X | en_AU |
dc.identifier.issue | 20 | en_AU |
dc.identifier.journaltitle | ACS Nano | en_AU |
dc.identifier.pagination | 12945-12956 | en_AU |
dc.identifier.uri | https://doi.org/10.1021/acsnano.4c00966 | en_AU |
dc.identifier.uri | https://apo.ansto.gov.au/handle/10238/16270 | en_AU |
dc.identifier.volume | 18 | en_AU |
dc.language | English | en_AU |
dc.language.iso | en | en_AU |
dc.publisher | American Chemical Society | en_AU |
dc.subject | Diffraction | en_AU |
dc.subject | Electrodes | en_AU |
dc.subject | Materials | en_AU |
dc.subject | Spinels | en_AU |
dc.subject | Sodium | en_AU |
dc.subject | Electrochemistry | en_AU |
dc.subject | Energy storage | en_AU |
dc.subject | Energy storage systems | en_AU |
dc.subject | Spectroscopy | en_AU |
dc.title.alternative | Interfacial spinel local interlocking strategy toward structural integrity in P3 oxide cathodes | en_AU |
dc.type | Journal Article | en_AU |