Phononic structure engineering: the realization of einstein rattling in calcium cobaltate for the suppression of thermal conductivity

dc.contributor.authorTian, Ren_AU
dc.contributor.authorKearley, GJen_AU
dc.contributor.authorYu, DHen_AU
dc.contributor.authorLing, CDen_AU
dc.contributor.authorPham, ANen_AU
dc.contributor.authorEmbs, JPen_AU
dc.contributor.authorShoko, Een_AU
dc.contributor.authorLi, Sen_AU
dc.date.accessioned2025-01-30T00:49:36Zen_AU
dc.date.available2025-01-30T00:49:36Zen_AU
dc.date.issued2016-07-26en_AU
dc.date.statistics2025-01-29en_AU
dc.description.abstractPhonons in condensed matter materials transmit energy through atomic lattices as coherent vibrational waves. Like electronic and photonic properties, an improved understanding of phononic properties is essential for the development of functional materials, including thermoelectric materials. Recently, an Einstein rattling mode was found in thermoelectric material Na0.8CoO2, due to the large displacement of Na between the [CoO2] layers. In this work, we have realized a different type of rattler in another thermoelectric material Ca3Co4O9 by chemical doping, which possesses the same [CoO2] layer as Na0.8CoO2. It remarkably suppressed the thermal conductivity while enhancing its electrical conductivity. This new type of rattler was investigated by inelastic neutron scattering experiments in conjunction with ab-initio molecular dynamics simulations. We found that the large mass of dopant rather than the large displacement is responsible for such rattling in present study, which is fundamentally different from skutterudites, clathrates as well as Na analogue. We have also tentatively studied the phonon band structure of this material by DFT lattice dynamics simulation, showing the relative contribution to phonons in the distinct layers of Ca3Co4O9. © The Author(s) 2016 - CC-BY - This work is licensed under a Creative Commons Attribution 4.0 International License.en_AU
dc.format.mediumElectronicen_AU
dc.identifier.articlenumber30530en_AU
dc.identifier.citationTian, R., Kearley, G. J., Yu, D., Ling, C. D., Pham, A., Embs, J. P., Shoko, E., & Li, S. (2016). Phononic structure engineering: the realization of einstein rattling in calcium cobaltate for the suppression of thermal conductivity. Scientific Reports, 6(1), 30530. doi:10.1038/srep30530en_AU
dc.identifier.issn2045-2322en_AU
dc.identifier.issue1en_AU
dc.identifier.journaltitleScientific Reportsen_AU
dc.identifier.urihttps://doi.org/10.1038/srep30530en_AU
dc.identifier.urihttps://apo.ansto.gov.au/handle/10238/15961en_AU
dc.identifier.volume6en_AU
dc.languageEnglishen_AU
dc.language.isoenen_AU
dc.publisherSpringer Natureen_AU
dc.subjectCalciumen_AU
dc.subjectThermal conductivityen_AU
dc.subjectMaterialsen_AU
dc.subjectSodiumen_AU
dc.subjectCobalten_AU
dc.subjectThermoelectricityen_AU
dc.subjectMoleculesen_AU
dc.subjectEinstein effecten_AU
dc.subjectMatteren_AU
dc.titlePhononic structure engineering: the realization of einstein rattling in calcium cobaltate for the suppression of thermal conductivityen_AU
dc.typeJournal Articleen_AU
dcterms.dateAccepted2016-07-05en_AU
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Phononic Structure Engineering the Realization of Einstein Rattling in Calcium Cobaltate for the Suppression of Thermal Cond.pdf
Size:
1.71 MB
Format:
Adobe Portable Document Format
Description:
Published version
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.66 KB
Format:
Plain Text
Description:
Collections